

This project has received funding from the European Union's Horizon 2020
research and innovation programme under grant agreement No 871481

D3.13 Profiles and Brokerage II

Authors: Dominik Kowald, Dieter Theiler, Peter Müllner, Emanuel Lacic (KNOW)

Additional Information: -

December 2022

Ref. Ares(2022)8408547 - 05/12/2022

D3.13 Profiles and Brokerage II

© TRUSTS, 2022 Page | 2

TRUSTS Trusted Secure Data Sharing Space

D3.13 Profiles and Brokerage II

Document Summary Information

Grant Agreement
No

871481 Acronym TRUSTS

Full Title TRUSTS Trusted Secure Data Sharing Space

Start Date 01/01/2020 Duration 36 months

Project URL https://trusts-data.eu/

Deliverable D3.13 Profiles and Brokerage II

Work Package WP3

Contractual due
date

31/12/2022 Actual submission date 05/12/2022

Nature Demonstrator Dissemination Level Public

Lead Beneficiary KNOW

Responsible Author Dominik Kowald

Contributions from Dieter Theiler, Peter Müllner, Emanuel Lacic (KNOW)

https://trusts-data.eu/

D3.13 Profiles and Brokerage II

© TRUSTS, 2022 Page | 3

Revision history (including peer reviewing & quality control)

Version
Issue
Date

%
Complete1

Changes Contributor(s)

v1.0 05/08/
2022

5% Deliverable Structure Dominik Kowald (KNOW)

V1.1 08/09/
2022

10% Definition of T3.6 Research Outputs Dominik Kowald (KNOW)

V1.2 15/09/
2022

15% Updated executive summary and
introduction

Dominik Kowald (KNOW)

V1.3 29/09/
2022

40% Service infrastructure and integration
into TRUSTS platform

Dieter Theiler (KNOW)

V1.4 24/10/
2022

50% Related work about recommender
systems in data markets

Peter Müllner (KNOW)

V1.5 03/11/
2022

75% Evaluation of the TRUSTS
recommender system

Peter Müllner (KNOW)

V1.6 10/11/
2022

80% Research results, System
Architecture, Data Scheme and
Service Interface

Dieter Theiler, Peter
Müllner, Emanuel Lacic,
Dominik Kowald (KNOW)

V1.7 18/11/
2022

85% Conclusion and polishing Dieter Theiler, Peter
Müllner, Emanuel Lacic,
Dominik Kowald (KNOW)

V2.0 05/12/
2022

100% Integrating feedback from internal
review

Dieter Theiler, Peter
Müllner, Emanuel Lacic,
Dominik Kowald (KNOW)

1 According to TRUSTS Quality Assurance Process:

1. to be declared

D3.13 Profiles and Brokerage II

© TRUSTS, 2022 Page | 4

Disclaimer

The content of the publication herein is the sole responsibility of the publishers and it does not necessarily

represent the views expressed by the European Commission or its services.

While the information contained in the documents is believed to be accurate, the authors(s) or any other

participant in the TRUSTS consortium make no warranty of any kind with regard to this material including, but

not limited to the implied warranties of merchantability and fitness for a particular purpose.

Neither the TRUSTS Consortium nor any of its members, their officers, employees or agents shall be responsible

or liable in negligence or otherwise howsoever in respect of any inaccuracy or omission herein.

Without derogating from the generality of the foregoing neither the TRUSTS Consortium nor any of its members,

their officers, employees or agents shall be liable for any direct or indirect or consequential loss or damage caused

by or arising from any information advice or inaccuracy or omission herein.

Copyright message

© TRUSTS, 2020-2022. This deliverable contains original unpublished work except where clearly indicated

otherwise. Acknowledgement of previously published material and of the

work of others has been made through appropriate citation, quotation or both. Reproduction is authorised provided

the source is acknowledged.

D3.13 Profiles and Brokerage II

© TRUSTS, 2022 Page | 5

Table of Contents

1 Executive Summary 9

2 Introduction 10

2.1 Mapping Project Outputs 11

2.2 Deliverable Overview and Report Structure 12

3 Recommender Systems in Data Markets and Platforms 12

4 TRUSTS Recommender System 14

4.1 Functional Requirements, Recommendation Use Cases, and Architectural Requirements 14

4.2 System Architecture, Data Scheme, and Service Interfaces 16

4.2.1 ScaR and its Modules 16

4.2.2 REST-Services 18

4.3 REST-Services 19

4.3.1 Backend Database – Apache Solr 21

4.3.2 Recommendation Algorithms 23

4.4 Integration into the TRUSTS Platform 23

5 Evaluation of the TRUSTS Recommender System 28

5.1 Evaluated Recommendation Use Cases 29

5.2 OpenML Dataset 30

5.3 Recommendation Algorithms 32

5.4 Evaluation Criteria and Results 32

6 Research Outputs of T3.6. 34

7 Conclusion and Future Outlook 36

8 References 36

D3.13 Profiles and Brokerage II

© TRUSTS, 2022 Page | 6

List of Figures

Figure 1: Overview of DMA ecosystem with broker/recommender system for matchmaking users,
datasets, and services. .. 14

Figure 2: Recommendation use cases in TRUSTS. ... 15

Figure 3: System architecture of TRUSTS recommender system. ... 18

Figure 4: Overview of the Data Ingestion REST-Service. ... 19

Figure 5: Overview of the Recommendation REST-Service. .. 20

Figure 6: Items Core. ... 21

Figure 7: Interactions Core. ... 22

Figure 8: Feedbacks Core. ... 22

Figure 9: Datasets Recommendation. ... 24

Figure 10: Applications Recommendation. ... 24

Figure 11: Services Recommendation. .. 25

Figure 12: Datasets to Service Recommendation. .. 25

Figure 13: Services and Applications to Dataset Recommendation. .. 26

Figure 14: Datasets to Dataset Recommendation. ... 26

Figure 15: Applications and Services to Application Recommendation.. 27

Figure 16: Search Results Recommendation. .. 27

Figure 17: The connection between runs and datasets. task_id and ttid are the unique identifier of a
certain task, and did is the identifier of the corresponding dataset. .. 30

Figure 18: Quantitative results of our experiments with respect to accuracy and popularity bias. 33

Figure 19: Fraction of recommendations for popular items. .. 34

D3.13 Profiles and Brokerage II

© TRUSTS, 2022 Page | 7

List of Tables

Table 1: Adherence to TRUSTS GA Deliverable & Tasks Descriptions. .. 11

Table 2: Functional requirements of the TRUSTS recommender system. .. 14

Table 3: Architectural requirements of the TRUSTS recommender system. .. 15

Table 4: Recommendation use cases. ... 29

Table 5: Descriptive statistics of our dataset. ... 31

D3.13 Profiles and Brokerage II

© TRUSTS, 2022 Page | 8

Glossary of terms and abbreviations used

Abbreviation / Term Description

DMA Data Market Austria

CF Collaborative Filtering

MP Most Popular

CB Content-based Filtering

SP Service Provider

DML Data Modification Layer

IDS International Data Spaces

RE Recommender Engine

RC Recommender Customizer

REV Recommender Evaluator

ML Machine Learning

KNN K-Nearest Neighbors

D3.13 Profiles and Brokerage II

© TRUSTS, 2022 Page | 9

1 Executive Summary

The creation and enrichment of user and corporate profiles is the basis for developing brokerage services

that aim to provide recommendations for interlinking users with various offers available in the TRUSTS

platform, i.e., services and datasets. Thus, the aim of this deliverable is to describe the second and final

version of the TRUSTS recommender system that is developed for these purposes in course of T3.6. This

deliverable directly builds on the deliverable D3.12, which described the first and initial version of the

TRUSTS recommender system and which was successfully submitted in M18.

In D3.12., we described functional requirements identified in D2.2 and defined architectural

requirements as well as six recommendation use cases for the TRUSTS recommender system. This

included (i) the recommendation of datasets to users, (ii) the recommendation of services to users, (iii)

the recommendation of datasets to services, (iv) the recommendation of services to datasets, (iv) the

recommendation of datasets to datasets, and (vi) the recommendation of services to services.

Furthermore, we described a scalable recommendation architecture that is capable of supporting these

use cases, and that can consume data generated in the TRUSTS platform in line with the IDS information

model. In order to test and fine-tune our recommendation algorithms, we proposed an offline evaluation

plan using data gathered from the OpenML platform, which is a dataset and service sharing platform.

Finally, we presented initial results of a privacy-aware recommendation experiment, in which we aimed

to provide quality recommendations with a limited amount of private user data.

In D3.13., we provide an updated and final description of our functional requirements and the service

interfaces of the TRUSTS recommender system. We also describe how the recommender system is

integrated in the TRUSTS platform. Additionally, we report the offline evaluation results based on the

data we gathered from OpenML. Our results show that recommendations based on collaborative

filtering are the most accurate ones. However, we also find that content-based recommendations are

the least popularity-biased ones that also provide the highest dataset and service coverage. This is in line

with the fundamental accuracy-popularity bias trade-off present in recommender systems.

Finally, we summarize all research outputs achieved in course of T3.6. This includes a paper presented at

ECIR’2021 (European Conference on Information Retrieval) on privacy aspects of recommender systems

as well as two papers presented at ECIR’2022 on popularity bias in recommender systems. In a fourth

paper at ECIR’2023, we presented the ScaR2 recommender framework, which was also used to

implement the TRUSTS recommender system. Additionally, we will present a paper at the DataEconomy

workshop in 2022 on our offline recommender evaluation using OpenML data mentioned beforehand.

Taken together, the purpose of this deliverable is to demonstrate the final and integrated version of the

TRUSTS recommender system. Additionally, this deliverable documents the underlying technical

specifications of its service interfaces, and how it is integrated into the TRUSTS platform. This is

complemented by the presentation of an offline evaluation study of the recommender system as well as

a summarization of all research outputs produced in T3.6.

2
 http://scar.know-center.tugraz.at/, accessed Dec 2, 2022.

https://www.google.com/url?q=http://scar.know-center.tugraz.at/&sa=D&source=docs&ust=1669974298577664&usg=AOvVaw25LjWGSEQ0BbvT9GrmJclt

D3.13 Profiles and Brokerage II

© TRUSTS, 2022 Page | 10

2 Introduction

Data is a substantial factor in the economy of the 21st century. It is a driver for growth and innovation
and penetrates ever more and more aspects of private and corporate life. In fact, it has become an
important input in many commodities (e.g., the internet of things) and services. The data economy is
generating value from gathered information which was not possible even a few years ago and the
current prospect is that this will even intensify further.

Besides all its benefits, data also has two major drawbacks which prevents it from fulfilling its
transformational potential. Firstly, high-quality data is hard to come by and secondly it is even harder to
extract valuable information from it. These two points shall be briefly discussed.

The inaccessibility of high-quality data partly stems from the fact that most of it is stored in data silos
owned by big tech companies (e.g., Amazon, Facebook, Google), which gain an advantage over their
competitors by keeping the data to themselves, or by so called data aggregators (e.g., Bloomberg,
Reuters) who act as de facto monopolists and provide their services at high prices. Another factor is the
reluctance of organizations to share their own data because there are no valuable business models or
security/privacy concerns. As a result, data cannot be seen as a commodity, which can be sold or bought
in a frictionless manner, which is detrimental to its distribution. Another difficulty hindering broader
access is the lack of transparency regarding property rights, which makes it difficult to determine who
owns what kind of data. Potential legal repercussions therefore act as a hindrance to data transfer.
Finally, as a result of the preceding arguments, there is often no price, or one that does not reflect actual
demand and supply, on data. Because of this fact there might not be enough incentives to distribute or
even create data in the first place.

The second drawback is the complexity and difficulty of extracting valuable insights from data. To apply
the right algorithm for a given dataset and use case, it requires well-founded knowledge of data science,
statistics, and mathematics as well as domain knowledge. Personnel with these skills is rare and often
too expensive for small and medium sized firms. This circumstance makes it difficult for all but the
largest corporations to reap the full benefits of the data economy.

The two main drawbacks discussed above can both be addressed by establishing a trusted marketplace
for data, which is the vision of TRUSTS. Not only would a data market bring together the producers and
consumers of data but also the experts developing and applying algorithms. The monetary incentives
would ensure that the demand roughly matches the supply and that the quality of goods (i.e., datasets
and services) achieve a constantly high level. In addition, transactions would be contract based, clearly
reflecting property rights.

Markets are well suited for matching tasks between different actors but also require a high level of
knowledge about the respective matter to live up to their full potential. The knowledge intensity is
particularly demanding when trading data and algorithms whose value for non-specialists often does not
manifest itself at first glance. So, actors in those markets are prone to imperfect information. Therefore,
to drive down transaction costs and to reduce the potential of market failure, a brokering instance in the
form of a recommender system is needed.

The development and evaluation of this recommender system is the main objective of T3.6. To achieve
this, we transferred the functional requirements of the TRUSTS platform related to brokerage to
recommendation use cases, which we further translated to architectural requirements for the TRUSTS
platform. Based on these architectural requirements, we designed a recommendation system

D3.13 Profiles and Brokerage II

© TRUSTS, 2022 Page | 11

architecture, a data scheme as well as service interfaces used for integration into the platform. Apart
from that, we also performed an offline evaluation using data gathered from the machine learning
platform OpenML and conducted research in the areas of privacy-aware recommendations as well as
popularity bias of recommendations.

It should be noted that in TRUSTS we also have applications (i.e., apps), but from the perspective of the
recommender system, services and applications can be treated interchangeably. Thus, in this deliverable
we solely talk about services but also mean applications. The same is true for users and corporates, and
thus we solely use the term user in this deliverable but also mean corporates.

Taken together, the results achieved in T3.6 are three-fold:

1. From an evaluation perspective, T3.6 used publicly available data from the OpenML data and
service sharing platform to evaluate the TRUSTS recommender system. This also allowed us to
fine-tune the recommendation algorithms, and we shared our created OpenML dataset with the
research community.

2. From a research perspective, T3.6 contributed 5 scientific publications. This includes a paper
presented at ECIR’2021 on privacy aspects of recommender systems, as well as two papers
presented at ECIR’2022 on popularity bias in recommender systems. In a fourth paper at
ECIR’2023, we presented the ScaR recommender framework, which was also used to implement
the TRUSTS recommender system. Additionally, we will present a paper in the ACM SIGCOMM
DataEconomy workshop in 2022 on our offline recommender evaluation using OpenML data.

3. From a technical point of view, T3.6 fully integrated the recommender system into the IDS-based
infrastructure of the TRUSTS platform.

2.1 Mapping Project Outputs

Purpose of this section is to map the TRUSTS Grant Agreement commitments, both within the formal
deliverable and task description, against the project’s respective outputs and work performed.

Table 1: Adherence to TRUSTS GA Deliverable & Tasks Descriptions.

TRUSTS Task Respective
Document
Chapter(s)

Justification

T3.6.:
User and
corporate
profiles
and
brokerage

Based on the work in T3.4, dataset and service
descriptions and interactions with the platform
are processed by information extraction
algorithms. The extracted information is the basis
for recommendations and matchmaking
algorithms with user and corporate profiles. With
regard to datasets, services for the analysis of
this data are suggested or other data for
enrichment and combination might be suggested.

Section 4.1.

Section 4.2.

Section 4.3.

Section 4.4.

Section 5

Section 6

The sections
describe the
whole design
process of the
TRUSTS
recommender
system, starting
with the
requirements

D3.13 Profiles and Brokerage II

© TRUSTS, 2022 Page | 12

Similarly, with regard to services, potential input
data as well as pre- and post-processing services
might be suggested. The extracted information
can be used to improve descriptions and profiles
of datasets and services. This leads to brokerage
activities, where a mapping between offerings
and demands of data and services is made. If no
valid mappings can be established, suggestions
are generated to publish new data or services.

and use cases,
over the system
architecture and
service interface
integration, to
the evaluation
plan and
research results.

TRUSTS Deliverable

D3.13: Profiles and Brokerage II

This deliverable constitutes demonstrator systems that show practical application of the developed
algorithms to production data. It describes the evolution of the contributions identified and provided
in D3.12 (i.e., suitable recommendation use cases and applicable algorithms and datasets to support
them, as well as a proof-of concept demonstrator), incorporating new insights and describing how
brokerage functionality is leveraged in the integrated TRUSTS platform.

2.2 Deliverable Overview and Report Structure

In the following, we give an overview of the structure of this demonstrator deliverable. In Chapter 3, we
give an overview about existing recommender systems solutions in data markets and platforms,
including the Data Market Austria recommender system. Subsequently, in Chapter 4, we outline the
functional requirements (see also D2.2.) as well as the architectural requirements (see also D2.6.) for the
TRUSTS recommender system. Additionally, Chapter 4 describes the system architecture, data scheme,
and service integration into the TRUSTS platform. Finally, Chapter 5 includes an offline evaluation
experiment using data gathered from the OpenML platform, and Chapter 6 summarizes the research
outputs of T3.6. We close this deliverable in Chapter 7 with a summary of our findings and contributions
as well as an outlook into potential future work.

3 Recommender Systems in Data Markets and Platforms

Recommender systems for data and services are of growing interest to both academia and industry in
the field of data and AI-driven economies. Traditionally, recommender systems are deployed in domains
tightly connected to private customers, for example, the movie, book, music, or e-commerce domain.
However, the growing interest in recommender systems for AI-driven economies stems from the
immense amount of data that is collected and stored by firms (Stahl et al., 2016; Liang et al., 2018;
Fernandez et al., 2020). To filter this overload of information, employing recommender systems is a
natural choice.

In this vein, Jess et al. (2015) design a recommender system for the industrial domain and use artificial
data to help human decision-making for supply-chain and financial problems. Also, Patra et al. (2020)
utilize content-based Filtering for dataset recommendations in the genetics domain.

D3.13 Profiles and Brokerage II

© TRUSTS, 2022 Page | 13

Besides, research on service recommendations overlaps with research on Automated Machine Learning,
which automatically compiles a machine learning pipeline (including algorithms) for a given dataset and
problem (He et al., 2021). For example, Zschech et al. (2019) recommend a service in the form of a data
mining pipeline, whereas Vainshtein et al. (2018) and Song et al. (2012) recommend services in the form
of classification algorithms via exploiting metadata and structural properties of datasets.

Many research works separate dataset and service recommendations. However, research is scarce on
how these two strands can be a single recommendation framework for an AI-driven economy. For
example, Data Market Austria (DMA)3, which employs a recommender system to connect users,
datasets, and services (Kowald et al., 2019), see also Figure 1. However, the recommender system’s
interaction-based recommendation algorithms fail to provide accurate recommendations in the case
recommendations need to be generated between datasets and services. Moreover, the authors raise
concerns about the realism of their dataset used for their study.

In TRUSTS, we will extend this work into three directions: First, besides interaction-based
recommendation algorithms, we will employ content-based recommendation algorithms (see Section
4.2). Second, we will develop recommendation use cases between datasets and dataset providers, and
services and service providers. Third, we will evaluate our work using a novel dataset based on the

OpenML platform, which enables studying recommender systems for AI-economies.

3
 Data Market Austria: https://datamarket.at/, accessed Dec 2, 2022

https://datamarket.at/

D3.13 Profiles and Brokerage II

© TRUSTS, 2022 Page | 14

Figure 1: Overview of DMA ecosystem with broker/recommender system for matchmaking users, datasets, and
services.

4 TRUSTS Recommender System

In this section, we describe the recommender system implemented in TRUSTS. This includes (i) its
functional as well as architectural requirements and use cases, (ii) its system architecture, data scheme
and service interfaces, and (iii) the integration into the TRUSTS platform.

4.1 Functional Requirements, Recommendation Use Cases, and Architectural
Requirements

The functional requirements of the TRUSTS recommender system have been developed in WP2 and are
documented in detail in D2.24. In Table 2, we summarize these functional requirements related to our
recommender system.

Table 2: Functional requirements of the TRUSTS recommender system.

Recommender system: Related functional requirements

FR6 The system should be able to provide datasets and services recommendations to its users
pertaining to their profile and needs.

FR7 The system should employ matchmaking mechanisms through which hosted datasets are
matched with hosted services (e.g., suitable for their analysis) and vice versa.

FR8 The system should identify and match related datasets so as to provide combined and
enriched data.

FR9 The system should be able to improve datasets and services profiles based on extracted
information originating from the available data.

FR17 The system should provide brokerage mechanisms for addressing the offerings and demands
of the hosted datasets and services.

FR25 The system should be able to keep continuously updated profiles of the hosted datasets and
services based on related interactions performed with the system.

FR26 Dataset discovery should be based on the FAIR principle.

4
 D2.2: https://www.trusts-data.eu/wp-content/uploads/2020/10/D2.2-Industry-specific-requirements-analysis-

definition-of-the-vertical-E2E-data-marketplace-functionality-and-use-cases-definition-I.pdf, accessed Dec 2, 2022.

https://www.trusts-data.eu/wp-content/uploads/2020/10/D2.2-Industry-specific-requirements-analysis-definition-of-the-vertical-E2E-data-marketplace-functionality-and-use-cases-definition-I.pdf
https://www.trusts-data.eu/wp-content/uploads/2020/10/D2.2-Industry-specific-requirements-analysis-definition-of-the-vertical-E2E-data-marketplace-functionality-and-use-cases-definition-I.pdf

D3.13 Profiles and Brokerage II

© TRUSTS, 2022 Page | 15

FR34 The system should allow consumers to announce their need for specific datasets / services if
there are not any available, already.

Based on these functional requirements, we derived six recommendation use cases that fulfill these
requirements. They are visualized in Figure 2. Here, RUC1 and RUC2 (i.e., recommending
datasets/services to users) address FR6, RUC3 and RUC4 (i.e., recommending datasets to services and
vice versa) address FR7, and RUC5 and RUC6 (i.e., recommending similar datasets/services for a given
dataset/service) address FR8. FR6-FR8 are also summarized in the form of FR17, and FR9 and FR25 deal
with creating and updating user/dataset/service profiles needed to generate recommendations. FR26 is
realized since recommender systems, by design, support the findability of datasets and services. Finally,
FR34 is addressed in T3.6 in the form of providing dataset and service recommendation in case a
dataset/service search query leads to an empty result list.

Figure 2: Recommendation use cases in TRUSTS.

In order to implement these use cases, we define architectural requirements to the TRUSTS
infrastructure that are also described in D2.6. Table 3 gives an overview of these architectural
requirements.

Table 3: Architectural requirements of the TRUSTS recommender system.

Recommender system: Architectural requirements

AR3.6.1

Notification mechanism to provide data for the recommender system.
In order to provide the recommender system with data for training its algorithms, the TRUSTS
platform should provide a mechanism to transfer data to the recommender system.
Therefore, the recommender system will provide REST-based services to add (i) metadata of
datasets, (ii) metadata of services, (iii) metadata of users, and (iv) interactions between those
entities (e.g., if a user downloads a dataset). The TRUSTS broker and the TRUSTS platform

D3.13 Profiles and Brokerage II

© TRUSTS, 2022 Page | 16

should use these services in order to notify the recommender system when new entities or
interactions come into the platform or when existing entities are changed.

AR3.6.2

User interface component to show recommendations.
For visualizing recommendation results to users, the TRUSTS platform should provide a user
interface component that is capable of showing an ordered list of recommendations. For this
purpose, the recommender system will provide REST-based services for six recommendation
use cases: (i) recommend datasets to users, (ii) recommend services to users, (iii) recommend
datasets to services, (iv) recommend services to datasets, (v) recommend datasets to
datasets, and (vi) recommend services to services. The TRUSTS platform needs to use these
services to query recommendations by providing parameters such as the current user, the
currently viewed dataset or service, one of the six mentioned use cases, the algorithm (most
popular, collaborative filtering, or content-based filtering) and the number of
recommendations to generate (the default value is 10).

AR3.6.3

User interface component to interact with recommendations.
When recommendations are shown to users, the TRUSTS platform should also allow them to
interact with the recommendations, i.e., click on the recommendations to get additional
information. Thus, for every recommendation request, the recommender system will
generate a unique recommendation ID that is provided with the list of recommendations. The
TRUSTS platform needs to store this recommendation ID and whenever a user interacts with a
recommended entity informs the recommender system about this interaction, which is
interpreted as feedback to the recommendation. With this, the recommender system is able
to evaluate the quality of the recommendations and adapt the algorithms if necessary.
Furthermore, this allows us to conduct A/B tests and compare the quality of three types of
algorithms (i.e., most popular, collaborative filtering, and content-based filtering).

In the current architectural vision of the TRUSTS platform, as described in deliverable D2.75, the sources
of the information mentioned above are threefold. First, the Broker which will register metadata on
assets will make available messages (or relevant parts thereof) regarding creation/modification of
metadata to the recommender system. Second, the contracting system, which is implemented as a
distributed ledger of transactions, will be the source of data regarding user-asset interactions. Finally,
the different user interfaces of the platform will provide information regarding the interactions.

4.2 System Architecture, Data Scheme, and Service Interfaces

This section gives a technical overview of all components and services of our recommender system.

4.2.1 ScaR and its Modules

As mentioned earlier, the system architecture used in the TRUSTS recommender system for data
markets is based on the scalable recommendation framework ScaR6. Its general infrastructure and

5
 D2.7: https://www.trusts-data.eu/wp-content/uploads/2022/01/D2.7-Architecture-design-and-technical-

specifications-document-II_Dec2021.pdf, accessed Dec 2, 2022.
6
 ScaR: http://scar.know-center.tugraz.at/, accessed Dec 2, 2022.

https://www.trusts-data.eu/wp-content/uploads/2022/01/D2.7-Architecture-design-and-technical-specifications-document-II_Dec2021.pdf
https://www.trusts-data.eu/wp-content/uploads/2022/01/D2.7-Architecture-design-and-technical-specifications-document-II_Dec2021.pdf
http://scar.know-center.tugraz.at/

D3.13 Profiles and Brokerage II

© TRUSTS, 2022 Page | 17

modules are depicted in Figure 3. The following briefly elaborates on the function of each of the
submodules and their interconnections to each other.

Service Provider (SP): The SP functions as the main entry- and communication-point between the
TRUSTS platform and the recommender system. Its RESTful services allow for requesting
recommendations for one of the six recommendation use cases described in Table 4 as well as uploading
dataset/service-, user- and interaction-metadata to the backend database.

Data Modification Layer (DML): The DML serves as data transfer intermediary between the individual
ScaR modules and performs CRUD (create, retrieve, update and delete) operations in interaction with
Apache Solr7. This particular search platform is being utilized for its multi core system – incorporating
item, user, interaction, and feedback data – and provides scalability as well as support for (near) real-
time data retrieval.

Recommender Engine (RE): The RE is the centerpiece module of ScaR since its purpose is to calculate
recommendations. Apache Solr’s built-in data structures allow for efficient similarity calculation. The RE
supports standard approaches like collaborative and content-based filtering as well as hybrids between
them. In addition, other algorithms can be added as needed depending on the particular use case.

Recommender Customizer (RC): The RC module holds customization profiles for each of the
recommendation algorithms. It allows for an easy adjustment of the individual input parameters (e.g.,
the number of recommended items) by the admins of TRUSTS. The RE automatically takes into account
those respective profiles which therefore have a direct effect on the calculation of the
recommendations.

Recommender Evaluator (REV): The REV is used for evaluating the algorithms applied by the RE. When
triggered it runs an offline evaluation based on training/test set splits or supports the execution of A/B
tests. In the TRUSTS project, we will focus on offline evaluation studies.

7
 https://solr.apache.org/

https://solr.apache.org/

D3.13 Profiles and Brokerage II

© TRUSTS, 2022 Page | 18

Figure 3: System architecture of TRUSTS recommender system.

4.2.2 REST-Services

This section provides an overview over the REST-API which can be subcategorized into (i) Data Ingestion
and (ii) Recommendation Services. The former encompasses calls to the following REST-Resources:

 Data Resource: Handles the storage of metadata related to datasets, services, and users.

 Interaction Resource: This service handles the storage of buy-, view- (i.e., click) and download-
interactions related to datasets and services. Please note that these three types of interactions
are examples of interaction types that we expect to have in the TRUSTS platform.

The latter contains one REST-Resource, which is the Recommendation Resource that handles requests of
a pre-specified number of recommendations for one of the six recommendation use cases. Figure 4 and
Figure 5 depict the Swagger user interface for the aforementioned REST-Resources including their
respective endpoints which will be described in the following subsections.

D3.13 Profiles and Brokerage II

© TRUSTS, 2022 Page | 19

4.3 REST-Services

Figure 4: Overview of the Data Ingestion REST-Service.

Data Ingestion Service

This service is used for uploading metadata of datasets, services, and applications to the database. It also
serves as a filter and extracts recommendation-relevant information of the received payload.

As the IDS-IM (International Data Spaces – Information Model) defined in the IDS Ontology8 draft is
designed to foster a central agreement between different services which share and apply data assets,
the Data Ingestion Service queries the central Broker for assets in respective format and processes the
retrieved information so that the data model of the Recommendation Service is populated. Hence, data
held in the central Broker and represented with the help of IDS-IM classes like Resource or App

Resource are queried in regular intervals to update data instances held in the recommender backend
periodically.

As shown in Figure 4: Overview of the Data Ingestion REST-Service, to explicitly trigger certain updates,
the Data Ingestion Service provides four endpoints to import applications, services, datasets or all assets
at once, from the central Broker. The result of these endpoints is defined by the DataResponse class,
which contains a HTTP response status code (http_status) and a message indicating the success or failure
of the call. To insert interaction data, which is generated when users work with the TRUSTS Platform and
is incorporated as a crucial source of information (besides assets metadata) for generating

recommendations, the /interaction/store endpoint allows to store different types of
interactions, namely view, download, accept_contract, publish, and view_recomm. These endpoints are
designed to be triggered by the TRUSTS user interface according to user actions. View events are
triggered when the user opens a data asset, download is sent when a user downloads a data asset,
accept_contract is used when the user accepts a contract to allow her working with a certain asset,
publish represents the event of making an asset available to be held in the central Broker and so to be
used by other users and view_recomm is stored when a user actively opens a recommended asset.

The input object for storing interactions consists of the recommenderId, which is the id of the
recommendation in case it was recommended (empty otherwise), the type, which stands for one of the

8
 https://international-data-spaces-association.github.io/InformationModel/docs/index.html

https://international-data-spaces-association.github.io/InformationModel/docs/index.html

D3.13 Profiles and Brokerage II

© TRUSTS, 2022 Page | 20

values used to describe the kind of interactions, the userId, which is filled with the id of the user
responsible for the interaction event, the timestamp, which indicates at which point in time (in
milliseconds) a certain interaction is made, the entityId, which defines the id of the asset which is
targeted by respective interaction and the entityType, which depicts one the possible assets types, i.e.,
application, service, or dataset. The response is also defined by the DataResponse class.

Recommendation Service

Figure 5: Overview of the Recommendation REST-Service.

This service is used for requesting recommendations for one of the six recommendation use cases. The
Recommender Service takes query string parameters as input, which are count, userId and, depending
on the actual type of entity which can be accepted by each endpoint as a recommendation target, either
applicationId, serviceId, or datasetId can be given. Count is used to state the number of results expected,
userId is used to define the id of the user requesting the recommendation, and applicationId, serviced, or
datasetId represent the id of the asset for which recommendations should be generated. The response
of the recommendation call is defined by the RecoResult class and contains the http_status, message,
reco_id and results, where reco_id contains the id of the recommendation request and results, which is
populated with actual recommendations.

D3.13 Profiles and Brokerage II

© TRUSTS, 2022 Page | 21

4.3.1 Backend Database – Apache Solr

The current database utilized by the ScaR framework is Apache Solr9. In principle, ScaR is able to work
with different document-based database engines, as the DML module is in charge of encapsulating the
underlying database. So far, Solr was chosen as the main search instance as it provides two main
advantages for the present use case. The first one is its query speed, which is most relevant for (near)
real time applications like recommender systems. The second one is its ability to seamlessly work with
several types of entities. If a project-wide decision enforces a different infrastructure at a level of data
storage, also other search engines could be applied, e.g., ElasticSearch10. The current database of ScaR
stores information about items, users, and interactions originating from the TRUSTS portal along with
metadata about the generated recommendations in four different cores. These are items, which contains
items of type application, service, and dataset, interactions, which contains interactions of users with
items and feedbacks, which contains the calculated recommendations as well as information regarding
the evaluation of the system.

Items Core

The Items Core contains application, service, and dataset data objects. Its schema-fields can be
subdivided into two property-categories:

 General fields: These properties contain meta-information about the items themselves.

 Interaction fields: These properties contain information about the interaction type and
the list of users who interacted with a specific item.

Figure 6: Items Core.

9
 https://solr.apache.org

10
 https://www.elastic.co/elasticsearch

https://solr.apache.org/
https://www.elastic.co/elasticsearch

D3.13 Profiles and Brokerage II

© TRUSTS, 2022 Page | 22

The fields belonging to the objects in the Items Core (see Figure 6) are id, the id of the item, type, the
type of the stored item, title, the name given, description, a natural language-based description, themes,
standardized item categories, language, a language code, version, the version of the item, created, the
date and time indicating its creation time, modified, the date and time of the item being last modified,
users_type, arrays of unique ids pointing to the users who targeted this item with interactions of type
type, users_type_count, total count of interactions of a given type, interaction_last_modified, the date
and time indicating the last modification of one of the item’s interaction fields and invalid, a flag
depicting whether the item is still valid for being shown in recommendations.

Interactions Core

The Interactions Core contains interaction data objects of users with applications, services and datasets.
The fields with the corresponding data types and meta-information are listed in Figure 7.

Figure 7: Interactions Core.

The fields belonging to the objects in the Interactions Core (see Figure 7) are id, the id of the interaction,
type, the type of the stored interaction, timestamp, the date and time indicating when the interaction
happened, user_id, the id of the user responsible for the interaction, entity_id, the id of the item the
user interacted with and reco_id, the id of the recommendation resulting in the interaction.

Feedbacks Core

The Feedbacks Core contains information regarding recommendations and their respective evaluation
metrics. The fields with the corresponding data types and meta-information are listed in Figure 8.

Figure 8: Feedbacks Core.

The fields belonging to the objects in the Feedbacks Core (see Figure 8) are

 Id: the id of the recommendation

D3.13 Profiles and Brokerage II

© TRUSTS, 2022 Page | 23

 recomm_profile_name: the name of the profile in the Recommender Customizer module used
for generating the recommendation

 recomm_ids: an array of ids indicating the items which were recommended

 item_ids: an array of ids indicating the items on which the recommendation is based on

 hybrid_recomm_*: these fields contain additional properties of the recommendation algorithm

 user_id: the id of the user who received the recommendation

 custom_filters: the recommendation filter specified on the client side used for filtering the
results

 recomm_algo: the algorithm which was applied for calculating the recommendation

 max_recomm_results: the number of recommendations requested by the client

 recomm_type: a parameter indicating whether users or items were recommended

 recomm_time: the date and time indicating when the recommendation happened

 duration: the time it took the recommendation algorithm to finish

 eval_id: the id of the evaluation

 expected_ids: an array of items which should have been recommended - used for calculating
evaluation metrics

 interaction_count: the number of interactions resulting from the recommendation

4.3.2 Recommendation Algorithms

We developed four types of recommendation algorithms to realize our six recommendation use cases:

 Most Popular (MP): This is an unpersonalized algorithm that always recommends the most
popular items (e.g., the datasets with the highest number of clicks).

 Collaborative Filtering (CF): This is a personalized algorithm that analyzes the interaction data of
items to find similar users, and then recommends items which these similar users interacted
with.

 Content-based Filtering (CB): This is another personalized algorithm calculating item-similarities
based on content features (e.g., title, description text) and then recommends these similar
items.

 Hybrid (HYB): We are also able to combine the aforementioned three recommendation
algorithms in a hybrid way, and thus, combine the advantages of the three methods.

4.4 Integration into the TRUSTS Platform

The recommender system is used in different places on the TRUSTS platform, according to the six
recommendation use cases. For RUC1, the recommender suggests datasets to the user in the “Datasets”
tab (see Figure 9: Datasets Recommendation), for RUC2, services and applications recommendations are
generated and shown in respective tabs for “Services” and “Applications” (see Figure 10: Applications
Recommendation and Figure 11: Services Recommendation). For RUC3, datasets are recommended for
services and applications on the respective page of the selected service or application in the section
“Datasets and services recommendations” (see Figure 12: Datasets to Service Recommendation). For
RUC4, application and services are suggested for datasets and shown in section “Applications
recommendations” and “Datasets and services recommendations” on the page of selected dataset (see

D3.13 Profiles and Brokerage II

© TRUSTS, 2022 Page | 24

Figure 13: Services and Applications to Dataset Recommendation). For RUC5, datasets are shown for
datasets on the respective page of a dataset in section “Datasets and services recommendations” (see
Figure 14: Datasets to Dataset Recommendation). Finally, for RUC6, applications and services are
recommended for each other in sections “Datasets and services recommendations” and “Applications
recommendations” (see Figure 15: Applications and Services to Application Recommendation).

Additionally, interesting datasets, services, and applications are recommended in the top section of the
search results page depending on the searched of the users. In each location where recommendations
are generated, up to 9 recommendation results are shown (see Figure 16: Search Results
Recommendation).

Figure 9: Datasets Recommendation.

Figure 10: Applications Recommendation.

D3.13 Profiles and Brokerage II

© TRUSTS, 2022 Page | 25

Figure 11: Services Recommendation.

Figure 12: Datasets to Service Recommendation.

D3.13 Profiles and Brokerage II

© TRUSTS, 2022 Page | 26

Figure 13: Services and Applications to Dataset Recommendation.

Figure 14: Datasets to Dataset Recommendation.

D3.13 Profiles and Brokerage II

© TRUSTS, 2022 Page | 27

Figure 15: Applications and Services to Application Recommendation.

Figure 16: Search Results Recommendation.

D3.13 Profiles and Brokerage II

© TRUSTS, 2022 Page | 28

To allow the REST-based requests to the recommender API to be instantiated in order to generate the
results shown in the GUI of the TRUSTS platform at the described locations, we extended the “ckanext-
ids” plugin, which was implemented during the TRUSTS project by partners involved in WP3. Therein, we
integrated the graphical (i.e., HTML and JavaScript) skeletons to show and retrieve the recommendation
results and integrated the invocation of the Recommender Service in the Python-based backend of the
CKAN extension. In addition to the integration of recommender requests to retrieve suggestions at
different places in the platform, we equipped the extension with invocations to the recommender
system’s Data Ingestion Service, which stores the interactions of users working with the TRUSTS platform
in the recommender system’s backend. These interactions in turn are used in real time to extend the
recommender’s knowledge base.

The recommender system itself is hosted together with other services on TRUSTS nodes with the help of
Docker and in particular Docker Compose. This way, the recommender system is deployed on premise in
the customer’s environment and is only accessible via the TRUSTS platform. As the TRUSTS platform only
instantiates the recommender system’s API from within the CKAN-based Python-backend, and no ports
are open for communicating with the recommender from outside the Docker network, the
recommender itself does not need to setup any further means to prohibit unauthorized access. Hence,
the services, i.e., the Docker Containers holding the different modules of the recommender system, are
instantiable from the CKAN service (i.e., “local-ckan”) and communicate with the Broker through the
Dataspace Connector service (i.e., “dsc”) which is hosted in the same Docker environment.

To be able to calculate recommendations, the recommender system imports metadata for datasets,
services and applications on a regular basis from the Broker, formats it according to the recommender’s
data model and stores it in the described Solr backend. To receive respective metadata held in the
Broker in form of IDS-structured entities, the Data Ingestion Service requests the Broker with the help of
SPARQL queries sent to the Dataspace Connector’s REST API. The Dataspace Connector encapsulates the
request in an IDS-formatted message, forwards it to the Broker and returns the resulting entities in a
table-like string-based format, which is subsequently transformed to the needed data model.

5 Evaluation of the TRUSTS Recommender System

In the following, we present the evaluation procedure of our work (Müllner et al., 2022) on
recommender systems for data and service sharing platforms. This work was accepted for presentation
at the ACM SIGCOMM DataEconomy workshop. In TRUSTS, the recommender system requires profile
data that is used for training and ground truth data that is used for testing. Profile data serves as a
representation of a target entity and describes its item preferences. Based on this data, the
recommender system is trained and eventually, recommendations are compared to the ground truth
data to evaluate the predictive capabilities of the recommender system. Typically, recommendations
need to be generated between users and items (e.g., recommending datasets to users). In TRUSTS
however, recommendations also need to be generated between services and datasets (see Figure 2).
This is a different recommendation use case than in case of traditional recommender systems. In total,
we identify six recommendation use cases, for which direct or indirect interaction data has to be
exploited to evaluate the recommender system (see Table 4). User-to-item interactions (e.g., a user
utilizing a dataset) are direct interactions. However, items, i.e., datasets and services, cannot directly
interact with each other; a user has to run a service on a dataset. Thus, we use direct user-to-dataset and

D3.13 Profiles and Brokerage II

© TRUSTS, 2022 Page | 29

user-to-service interactions to connect datasets and services indirectly. Finally, for items of the same
type (e.g., datasets and datasets) the ground truth data is unavailable, since in this case, relevant items
cannot be identified with our previous approach.

Table 4: Recommendation use cases.

5.1 Evaluated Recommendation Use Cases

In RUC1 (Datasets to Users), recommendations help users to identify relevant datasets. There exists a
direct interaction between users and datasets (e.g., a user uses a dataset for a service) and, thus, the
recommender system can leverage these interactions to generate recommendations.

In RUC2 (Services to Users), recommendations help users to identify relevant services. As in RUC1, also
in RUC2, the recommender system can leverage the direct interactions between users and services to
generate recommendations.

In RUC3 (Datasets to Services), recommendations help to identify suitable datasets for a given service.
This use case can occur when service providers aim to improve their service via testing it on more
datasets. In contrast to RUC1 and RUC2, indirect item-to-item interaction data has to be used to

 Profile Data Ground Truth Data

RUC1: Datasets to Users direct direct

RUC2: Services to Users direct direct

RUC3: Datasets to Services indirect indirect

RUC4: Services to Datasets indirect indirect

RUC5: Datasets to Datasets indirect unavailable

RUC 6: Services to Services indirect unavailable

D3.13 Profiles and Brokerage II

© TRUSTS, 2022 Page | 30

generate recommendations. Since users interact with services and datasets, we can use user interactions
to connect datasets and services. Specifically, the profile and ground truth data of a service consists of
the datasets that users used for the service.

In RUC4 (Services to Datasets), recommendations help to identify suitable services for a given dataset.
This use case can occur when dataset providers search for other services that can be used with their
dataset. Similar to RUC3, the profile and ground truth data of a dataset consists of the services that users
used for the dataset.

In RUC5 (Datasets to Datasets), dataset providers can find other datasets that are utilized by the same
user-community to identify datasets of competitors. We build the profile data in the same way as in case
of RUC4, i.e., the profile of a dataset consists of the services that users apply to the dataset. However, for
building the ground truth data, we cannot use this idea, since we need a set of relevant datasets for a
given dataset. Therefore, we create a collaboration network (Kowald et al., 2019). This means that we
create a link between two datasets if they have been used by the same user. Thus, the ground truth data
of a given dataset consists of the datasets that have the largest user overlap with this dataset.

In RUC6 (Services to Services), service providers can find other services that are utilized by the same
user-community. Similar to RUC5, this can identify services of competitors. We use the same idea as in
case of RUC5 to create profile and ground truth data. Hence, the profile of a service consists of the
datasets that users applied this service to and the ground truth data consists of the services with the
largest user overlap.

5.2 OpenML Dataset

To evaluate the recommender system developed in TRUSTS with respect to recommendation accuracy
and popularity bias, we conduct an offline evaluation study and use data gathered from the open-source
machine learning platform OpenML. With our offline evaluation, we can test the TRUSTS recommender
without the need to deploy and test it in the real world. This way, we do not risk to negatively impact the
experience of entities (e.g., users) while evaluating the usefulness of different recommendation
algorithms and settings. We rely on OpenML, since it provides an easy-to-use Python-based API to query
the data necessary to generate a dataset for our offline evaluation. In OpenML, users can upload so-
called runs. A run indicates that a user u applied a flow (i.e., an algorithm a with a certain parameter
setting) on a certain task. Task describes an objective that is optimized through algorithm a on dataset d.
For example, user u applies algorithm a on a regression task on dataset d.

Figure 17: The connection between runs and datasets. task_id and ttid are the unique identifier of a certain task, and did is the
identifier of the corresponding dataset.

D3.13 Profiles and Brokerage II

© TRUSTS, 2022 Page | 31

We generate our evaluation dataset via the following three retrieval steps (i) with
openml.datasets.list_datasets and openml.flows.list_flows, we retrieve all datasets and flows alongside
their textual description. Furthermore, we apply stemming on these textual descriptions via using
standard python functionality; (ii) with openml.runs.list_runs, we retrieve all runs, i.e., a triple containing
the user, algorithm, and task. We use openml.tasks.OpenMLTask to obtain the dataset for a given task
(see Fehler! Verweisquelle konnte nicht gefunden werden.Fehler! Verweisquelle konnte nicht
gefunden werden.), and (iii) since users can use the same algorithm for the same dataset for many times
we merge all repeated interactions. We highlight that the algorithms retrieved from OpenML are
referred to as “services” in the remainder of this work.

Our dataset includes users with an extraordinary large number of interactions. We observe that these
users are test users and bots, i.e., artificial users to test the platform. Therefore, we delete all data from
users, whose number of interactions exceeds the point of maximal curvature of the logarithmic-
transformed interaction-distribution using the Python-based Kneed11 library (Satopaa et al., 2011). With
this, we reduce the number of interactions in our dataset from 7,593,184 to 10,945. However, since the
removed interactions were generated by artificial users, we do not expect any impact on real users. After
these steps, our dataset consists of 10,945 interactions between 512 users, 573 datasets, and 1,307
services. Additionally, it includes 2,104 datasets and 11,037 algorithms without user interactions. Further
descriptive statistics of our generated OpenML dataset can be found in Table 5.

Table 5: Descriptive statistics of our dataset.

Users 544

Services 1,307

Datasets 573

Interactions 10,945

Avg. Interactions / User 21.38

Avg. Interactions / Services 8.37

Avg. Interactions / Dataset 19.10

Services without Interactions 11,037

Datasets without Interactions 2,104

In order to evaluate the recommender system in our six recommendation use cases, we split the
interaction data from each target entity (user, service, or dataset) into 80% training data and 20% test
data. For RUC3 and RUC4, we create training and test data by using indirect item-to-item interactions.
For RUC5 and RUC6, we resort to Kowald et al. (2019) and construct the training data via a collaboration
network which connects two datasets or two services if they were used by the same users. Plus, for the
test data, we use the 10 datasets and services with the highest user overlap.

11

 Kneed: https://github.com/arvkevi/kneed/

https://github.com/arvkevi/kneed/

D3.13 Profiles and Brokerage II

© TRUSTS, 2022 Page | 32

5.3 Recommendation Algorithms

We test the recommender system employed in TRUSTS via employing three widely-used
recommendation algorithms (Ricci et al., 2011): Most Popular MP, Collaborative Filtering CF, and
Content-based Filtering CB. With respect to these recommendation algorithms, we use the built-in
variants in the Java-based recommendation framework ScaR (Scalable Recommendation-as-a-service)
(Lacic et al., 2013 and Lacic et al., 2015) with the default parameters. Moreover, all recommendation
algorithms generate recommendation lists with 10 items. Also, we ensure that the recommendation lists
do not contain items that are already known to the target entity.

MP always recommends the most popular datasets and services, i.e., those with the largest number of
interactions, ignoring the true preferences of each target entity. Thus, recommendations are
unpersonalized and only a small subset of items can be recommended.

In contrast, CF generates personalized recommendations for a target entity via exploiting similar target
entities to identify items that are yet unknown, but considered to be relevant. For example, CF
recommends a dataset 𝑑 to a user 𝑢, if similar users (𝑢’s neighbors) have interacted with 𝑑. We use a CF
variant with 40 neighbors.

However, MP and CF cannot recommend items without interactions. Thus, we utilize CB to exploit
content instead of interactions to generate recommendations. Specifically, in our work, CB exploits TF-
IDF representations (Achananuparp, 2008 and Jones, 1972) of textual descriptions of datasets and
services. We rely on ScaR’s default settings and set the minimum term frequency to 1 and the minimum
document frequency to 2.

5.4 Evaluation Criteria and Results

We evaluate the three recommendation algorithms in our six recommendation use cases along two
evaluation criteria: recommendation accuracy and popularity bias.

Specifically, for accuracy, we use five well-established metrics (Parra and Sahebi, 2013): Precision P@k,
Recall R@k, Mean Reciprocal Rank MRR@k (Radev et al., 2002), Mean absolute Precision MAP@k, and
Normalized Discounted Cumulative Gain nDCG@k (Järvelin and Kekäläinen, 2002). P@k is the fraction of
items in the recommendation list that are relevant, R@k is the fraction of relevant items that are
recommended, MRR@k is the average reciprocal position of the first relevant item in the
recommendation list, MAP@k penalizes relevant items that occur at higher positions in the
recommendation list, and nDCG@k also - via the principle of cumulative gain - penalizes relevant items
based on their position.

In case of popularity bias, we resort to two widely-used metrics: Item Space Coverage Cov@k (Silveira et
al., 2019) and Average Recommendation Popularity RecPop@k. Cov@k is the fraction of all items that is
recommended at least once and RecPop@k is the average popularity of items in the recommendation
list, where the item popularity is the number of interactions for this item.

In the following, we present the evaluation results of the TRUSTS recommender system. Specifically, we
evaluate three recommendation algorithms for six different recommendation use cases with respect to
recommendation accuracy and popularity bias (see Figure 18).

For all recommendation use cases, CF (Collaborative Filtering) generates more accurate
recommendations than MP (Most Popular) and CB (Content-based Filtering). Across all use cases, CF can

D3.13 Profiles and Brokerage II

© TRUSTS, 2022 Page | 33

generate the most accurate recommendations for RUC4 (Services to Datasets), and the
recommendations for RUC6 (Services to Services) are the least accurate. Our OpenML dataset comprises
many more services than datasets. In case of RUC4, this small dataset-to-service ratio shows that there
exists a large item catalog (i.e., 1,307 services), that CF can recommend to few target entities (i.e., 573
datasets). As related work shows, this dataset-to-service ratio can positively affect recommendation
accuracy (Adomavicius and Zhang, 2012).

Figure 18: Quantitative results of our experiments with respect to accuracy and popularity bias.

For RUC2 (Services to Users), we have the same item catalog consisting of 1,307 services, however, the
recommendation accuracy is higher than for RUC4 (Services to Datasets). We investigate this in more
detail and find that 50% of users have more than six interactions, while only 28% of datasets have more
than six interactions. Due to large profile size for users (in RUC2), generating recommendations for users
seems to be more difficult than generating recommendations for datasets. For RUC6 (Services to
Services), we again have an item catalog with 1,307 services that needs to be recommended to the very
same large set of services. Due to this sparse interaction space, all our three recommendation methods
struggle to generate meaningful recommendations. However, the high accuracy for RUC5 (Datasets to
Datasets) shows that our approach of constructing the ground truth data is well suited for use cases
where an item type is recommended to the same item type.

Besides accuracy, we also evaluate for popularity bias and find that MP can only recommend a small
fraction of the item catalog as Cov@10 indicates. This makes sense, since MP always recommends the 10
most popular items which the target entity has not rated yet. This way, target entities cannot properly
explore the data and service sharing platform. In contrast, CB recommends the largest fraction of the
item catalog and thus, allows exploring large parts of the data and service sharing platform. Plus, CB
generates the least popularity-biased recommendations as RecPop@10 is smaller than for MP and CF.
This is due to the fact that CB can also recommend services or datasets without interactions, which is the
case for many datasets and services. We investigate popularity bias in more detail in Figure 19 and

D3.13 Profiles and Brokerage II

© TRUSTS, 2022 Page | 34

visualize the fraction of recommendations for popular items (i.e., the 10 most popular items a target
entity has not rated yet). Across all use cases, MP provides the recommendations with the most popular
items, whereas CB provides the least popularity-biased recommendations. Interestingly, CF can
recommend both, popular and non-popular items and this way, provides more popularity-balanced
recommendations.

Overall, CB tends to recommend non-popular items and MP recommends only the most popular items to
target entities, whereas CF can recommend popular and non-popular. Our findings that CF provides
accurate and popularity-balanced recommendations is in line with related research that shows that
accurate recommendations should include nonpopular items in addition to popular items (Abdollahpouri
et al., 2019 and Kowald et al., 2020).

Figure 19: Fraction of recommendations for popular items.

6 Research Outputs of T3.6.

Modern recommender systems collect and process vast amounts of users’ personal data. In most cases,
this data includes a user’s preferences for, e.g., movie genres (Hu et al., 2014; Cantador et al., 2011;
Harper and Konstan, 2015; Guo et al., 2014) or jokes (Goldberg et al., 2001). With that, recommender
systems pose several severe threats to users’ privacy, as Friedmann et al. outline (2015). In particular,
users have to share their personal data with the recommender system, which then serves as the basis for
the generation of recommendations. This by itself could be already regarded as a breach of a user’s
privacy, since another party (i.e., the recommender system) has access to the user’s personal data.
Furthermore, this data could be also used to infer sensitive attributes about the user, e.g., gender or
ethnicity. Therefore, it remains an important challenge to serve users with accurate recommendations
while protecting their privacy.

Since one goal of the TRUSTS project is to secure the privacy of personal data, i.e., TRUSTS challenge C6
“Advance the state-of-the-art with respect to scalability, computational efficiency of methods to secure
desired levels of privacy of personal data and/or confidentiality of commercial data”, we conduct
research in the area of privacy-preserving recommender systems as part of T3.6. We identify three
strands of research, aiming to develop privacy-preserving recommender systems: (i) Homomorphic
Encryption (Gentry, 2009), (ii) Differential Privacy (Dwork and Roth, 2014), and (iii) Federated Learning

D3.13 Profiles and Brokerage II

© TRUSTS, 2022 Page | 35

(McMahan et al., 2017). In Federated Learning, no data ever leaves the users’ devices. As such, users do
not send their data to the recommender system. Instead, the users share their data with a local copy of
the recommender system model on their own device and then send model parameters to the
recommender system.

Lin et al. (2020) introduce the MetaMF recommender system. Here, Federated Learning protects users’
privacy, while Meta Learning (Ha et al., 2016) increases the degree of personalization and thus, improves
accuracy of recommendations. However, according to Nasr et al. (2019), sharing only model parameters
in Federated Learning still leaks private data. Intuitively, there can be no data disclosure if there is no
data. In this vein, we acknowledge that users may have different inclinations of revealing their data to
the recommender system and identify in Muellner et al. (2021) the minimal amount of rating data, users
have to share with MetaMF in order to receive accurate recommendations. This work was published and
presented at ECIR’2021:

 Muellner, P., Kowald, D., & Lex, E. (2021). Robustness of Meta Matrix Factorization Against Strict
Privacy Constraints. In Proceedings of the 43rd European Conference on Information Retrieval
(ECIR'2021). Springer.

Additionally, we also researched the popularity bias apparent in recommender systems in two papers
published and presented at ECIR’2022:

 Kowald, D., & Lacic, E. (2022). Popularity Bias in Collaborative Filtering-Based Multimedia
Recommender Systems. In Proceedings of the BIAS Workshop co-located with the 44th European
Conference on Information Retrieval (ECIR'2022). Springer

 Lacic, E., Fadljevic, L., Weissenboeck, F., Lindstaedt, S., & Kowald, D. (2022). What Drives
Readership? An Online Study on User Interface Types and Popularity Bias Mitigation in News
Article Recommendations. In Proceedings of the 44th European Conference on Information
Retrieval (ECIR'2022). Springer.

The recommender systems framework ScaR, which was used as the underlying technology for the
recommender system developed in TRUSTS, was also published and presented in the industry track of
ECIR’2022:

 Lacic, E., & Kowald, D. (2022). Recommendations in a Multi-Domain Setting: Adapting for
Customization, Scalability and Real-Time Performance. In Industry-Day Track of European
Conference on Information Retrieval (ECIR'2022)

The offline evaluation of the TRUSTS recommender system was published and presented at the ACM
SIGCOMM DataEconomy workshop:

 Muellner, P., Schmerda, S., Theiler, D., Lindstaedt, S., & Kowald, D. (2022). Towards Employing
Recommender Systems for Supporting Data and Algorithm Sharing. In Proceedings of the
DataEconomy Workshop co-located with the 18th International Conference on emerging
Networking EXperiments and Technologies (CoNext'2022). ACM

Finally, our research efforts in TRUSTS have led to three datasets that we published via Zenodo:

 A dataset for studying privacy aspects of recommender systems:
https://zenodo.org/record/4031011#.YO_3Q0xCRPZ

 Another dataset for studying popularity bias in recommender systems:
https://zenodo.org/record/6123879#.Yx7dQ7TP1PZ

https://zenodo.org/record/4031011#.YO_3Q0xCRPZ
https://zenodo.org/record/6123879#.Yx7dQ7TP1PZ

D3.13 Profiles and Brokerage II

© TRUSTS, 2022 Page | 36

 And a dataset for evaluating recommender systems for data sharing platforms:
https://zenodo.org/record/6517031#.Yx7dfLTP1PY

7 Conclusion and Future Outlook

In this demonstrator deliverable, we have described how we provide brokerage in the TRUSTS portal by
realizing a recommender system for interlinking users with datasets and services. Thus, the focus of this
deliverable has been a technical one, and therefore we provided a detailed description of the TRUSTS
recommender system’s software architecture, its data scheme as well as its service integration into the
platform.

Apart from this technical focus, we have also provided research-related information that we see as
important for understanding the functionality of the recommender system. This includes a short
overview of recommender systems in data markets as well as our conducted offline evaluation of the
recommender system. The scientific work in TRUSTS has led to five papers presented at renowned
conferences and workshops in the field. Additionally, we have published three datasets that we made
freely available to the scientific community to foster further research on recommender systems for data
and service sharing platforms.

The work done in T3.6 on recommender systems for dataset and service sharing platforms will be
beneficial for future projects in the field of data markets and data economies. Our research has shown (i)
how to implement recommender systems in such a setting, and (ii) how to evaluate recommender
systems with respect to different trade-offs (e.g., between accuracy and popularity bias). However,
future work also needs to take the monetization factors into account, which we have neglected so far.

Additionally, our research on privacy aspects in recommender systems addresses a very timely topic in
light of the GDPR. Here, we have shown that machine learning techniques such as meta learning can help
to reduce the personal data needed to generate accurate recommendations. Here, future work should
focus on combining privacy-preserving technologies such as differential privacy with recommender
systems to add privacy guarantees and to increase the trust in recommender systems.

Finally, our evaluation of the TRUSTS recommender system was conducted solely in an offline-based
manner. This enabled us to test the applicability of the recommender algorithms before integrating them
into the TRUSTS platform. Also, through the offline evaluation, we did not risk any negative effects the
recommendations can have on the users and companies while testing different recommendation
algorithms and settings. However, offline evaluation results do not necessarily need to correlate with
online evaluation results. Thus, our future work will also focus on evaluating the user acceptance of the
recommendations in the running TRUSTS platform after project end. We plan to publish these online
evaluation results in additional scientific publications after project end.

8 References

https://zenodo.org/record/6517031#.Yx7dfLTP1PY

D3.13 Profiles and Brokerage II

© TRUSTS, 2022 Page | 37

Abdollahpouri, H., Mansoury, M., Burke, R., & Mobasher, B. (2019). The unfairness of popularity bias in
recommendation. In Workshop on Recommendation in Multi-stakeholder Environments (RMSE 2019), in
conjunction with RecSys 2019.

Achananuparp, P., Hu, X., & Shen, X. (2008, September). The evaluation of sentence similarity measures.
In International Conference on data warehousing and knowledge discovery (pp. 305-316). Springer,
Berlin, Heidelberg.

Adomavicius, G., & Zhang, J. (2012). Impact of data characteristics on recommender systems
performance. ACM Transactions on Management Information Systems (TMIS), 3(1), 1-17.

Bahls, D., Scherp, G., Tochtermann, K., & Hasselbring, W. (2012). Towards a Recommender System for
Statistical Research Data. In Proceedings of the 2nd International Workshop in Semantic Digital Archives,
(pp. 61-72).

Cantador, I., Brusilovsky, P., & Kuflik, T. (2011, October). Second workshop on information heterogeneity
and fusion in recommender systems (HetRec2011). In Proceedings of the fifth ACM conference on
Recommender systems, (pp. 387-388).

Chatzopoulou, G., Erinaki, M., & Polyzotis, N. Query Recommendations for Interactive Database
Exploration. In Winslett M. (ed.). Scientific and Statistical Database Managment. SSDBM 2009. Lecture
Notes in Computer Science, vol. 5566, (pp. 3-18), Springer, Berlin, Heidelberg.

Chen, X., Gururaj, A.E., Ozyurt, B., Liu, R., Soysal, E., Cohen, T., Tiryaki, F., Li, Y., Zong, N., Jiang, M.,
Rogith, D., Salimi, M., Kim, H., Rocca-Serra, P., Gonzalez-Beltran, A., Farcas, C., Johnson, T., Margolis, R.,

Alter, G., Sansone, S., Fore, I.M., Ohno-Machado, L., Grethe, J.S., Xu, H. (2018). DataMed – an open
source discovery index for finding biomedical datasets. In Journal of the American Medical
Informatics Association, vol. 25, no. 3, (pp. 300–308).

Dwork, C., & Roth, A. (2014). The algorithmic foundations of differential privacy. In Foundations and
Trends in Theoretical Computer Science, 9(3-4), (pp. 211-407).

Erinaki, M., Abraham, S., & Polyzotis, N. (2014). QueRIE: Collaborative Database Exploration. In IEEE
Transactions on Knowledge and Data Engineering, vol. 26, no. 7, (pp. 1778-1790).

Erinaki, M., Patel, S., (2015). QueRIE reloaded: Using Matrix Factorization to Improve Database Query
Recommendations. In IEEE International Conference on Big Data, (pp. 1500-1508).

Fernandez, R. C., Subramaniam, P., & Franklin, M. J. (2020). Data market platforms: Trading data assets
to solve data problems. Proc. VLDB Endow., (pp. 1933–1947).

Friedman, A., Knijnenburg, B. P., Vanhecke, K., Martens, L., & Berkovsky, S. (2015). Privacy aspects of
recommender systems. In Recommender systems handbook (pp. 649-688). Springer, Boston, MA.

Gentry, C. (2009, May). Fully homomorphic encryption using ideal lattices. In Proceedings of the forty-
first annual ACM symposium on Theory of computing, (pp. 169-178).

Goldberg, K., Roeder, T., Gupta, D., & Perkins, C. (2001). Eigentaste: A constant time collaborative
filtering algorithm. information retrieval, 4(2), 133-151.

Guo, G., Zhang, J., Thalmann, D., & Yorke-Smith, N. (2014, August). Etaf: An extended trust antecedents
framework for trust prediction. In 2014 IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining (ASONAM 2014), (pp. 540-547). IEEE.

Ha, D., Dai, A., & Le, Q. V. (2016). Hypernetworks. arXiv preprint arXiv:1609.09106.

D3.13 Profiles and Brokerage II

© TRUSTS, 2022 Page | 38

Harper, F. M., & Konstan, J. A. (2015). The movielens datasets: History and context. Acm transactions on
interactive intelligent systems (tiis), 5(4), 1-19.

He, X., Zhao, K., & Chu, X. (2021). AutoML: A survey of the state-of-the-art. Knowledge-Based Systems,
212, 106622.

Hu, L., Sun, A., & Liu, Y. (2014, July). Your neighbors affect your ratings: on geographical neighborhood
influence to rating prediction. In Proceedings of the 37th international ACM SIGIR conference on
Research & development in information retrieval, (pp. 345-354).

Järvelin, K., & Kekäläinen, J. (2002). Cumulated gain-based evaluation of IR techniques. ACM Transactions
on Information Systems (TOIS), 20(4), 422-446.

Jess, T., Woodall, P., Dodwani, V., Harrison, M., McFarlane, D., Nicks, E., & Krechel, W. (2015). An
Industrial Data Recommender System to Solve the Problem of Data Overload. In ECIS 2015 Research-In-
Progress Papers. Paper 52.

Jones, K. S. (1972). A statistical interpretation of term specificity and its application in retrieval. Journal of
documentation.

Kowald, D., Schedl, M., & Lex, E. (2020, April). The unfairness of popularity bias in music
recommendation: A reproducibility study. In European conference on information retrieval (pp. 35-42).
Springer, Cham.

Kowald, D., Traub, M., Theiler, D., Gursch, H., Lindstaedt, S., Kern, R., & Lex, E. (2019). Using the Open

Meta Kaggle Dataset to Evaluate Tripartite Recommendations in Data Markets. In REVEAL Workshop co-

located with ACM Conference on Recommender Systems.

Lacic, E., Kowald, D., Eberhard, L., Trattner, C., Parra, D., & Marinho, L. B. (2013). Utilizing online social

network and location-based data to recommend products and categories in online marketplaces. In

Mining, Modeling, and Recommending'Things' in Social Media (pp. 96-115). Springer, Cham.

Lacic, E., Traub, M., Kowald, D., & Lex, E. (2015, September). Scar: Towards a real-time recommender

framework following the microservices architecture. In Proceedings of the Workshop on Large Scale

Recommender Systems (LSRS2015) at RecSys (pp. 16-20).

Liang, F., Yu, W., An, D., Yang, Q., Fu, X., & Zhao, W. (2018). A survey on big data market: Pricing, trading

and protection. Ieee Access, 6, 15132-15154.

Lin, Y., Ren, P., Chen, Z., Ren, Z., Yu, D., Ma, J., Rijke, M., & Cheng, X. (2020). Meta Matrix Factorization

for Federated Rating Predictions. In Proceedings of the 43rd International ACM SIGIR Conference on

Research and Development in Information Retrieval.

McMahan, B., Moore, E., Ramage, D., Hampson, S., & y Arcas, B. A. (2017, April). Communication-

efficient learning of deep networks from decentralized data. In Artificial Intelligence and Statistics (pp.

1273-1282). PMLR.

Muellner P., Kowald D., Lex E. (2021) Robustness of Meta Matrix Factorization Against Strict Privacy

Constraints. In: Hiemstra D., Moens MF., Mothe J., Perego R., Potthast M., Sebastiani F. (eds) Advances in

Information Retrieval. ECIR 2021. Lecture Notes in Computer Science, vol 12657. Springer, Cham.

D3.13 Profiles and Brokerage II

© TRUSTS, 2022 Page | 39

Müllner, P., Schmerda, S., Theiler, D., Lindstaedt, S., & Kowald, D. (2022). Towards Employing

Recommender Systems for Supporting Data and Algorithm Sharing, DataEconomy Workshop at

CoNEXT’22.

Nasr, M., Shokri, R., & Houmansadr, A. (2019, May). Comprehensive privacy analysis of deep learning:

Passive and active white-box inference attacks against centralized and federated learning. In 2019 IEEE

symposium on security and privacy (SP), (pp. 739-753). IEEE.

Parra, D., & Sahebi, S. (2013). Recommender systems: Sources of knowledge and evaluation metrics. In

Advanced techniques in web intelligence-2 (pp. 149-175). Springer, Berlin, Heidelberg.

Patra, B.G., Roberts, K., & Wu, H. (2020). A content-based dataset recommendation system for
researchers—a case study on Gene Expression Omnibus (GEO) repository. In Database, Volume 2020,
2020.

Radev, D. R., Qi, H., Wu, H., & Fan, W. (2002, May). Evaluating Web-based Question Answering Systems.
In LREC.

Ricci, F., Rokach, L., & Shapira, B. (2011). Introduction to recommender systems handbook. In
Recommender systems handbook (pp. 1-35). Springer, Boston, MA.

Satopaa, V., Albrecht, J., Irwin, D., & Raghavan, B. (2011, June). Finding a" kneedle" in a haystack:
Detecting knee points in system behavior. In 2011 31st international conference on distributed
computing systems workshops (pp. 166-171). IEEE.

Silveira, T., Zhang, M., Lin, X., Liu, Y., & Ma, S. (2019). How good your recommender system is? A survey
on evaluations in recommendation. International Journal of Machine Learning and Cybernetics, 10(5),
813-831.

Singhal, A., Srivastava, J. (2017). Research Dataset Discovery from Research Publications Using Web
Context. In Web Intelligence, vol. 15, no. 2, (pp. 81-99).

Song, Q., Wang, G., Wang, C. (2012). Automatic recommendation of classification algorithms based on
data set characteristics. In Pattern Recognition, vol. 45, no. 7, (2672-2689).

Stahl, F., Schomm, F., Vossen, G., & Vomfell, L. (2016). A classification framework for data marketplaces.
Vietnam Journal of Computer Science, 3(3), 137-143.

Vainshtein, R., Greenstein-Messica, A., Katz, G., Shapira, B., & Rokach, L. (2018). A Hybrid Approach for

Automatic Model Recommendation. In Proceedings of the 27th ACM International Conference on

Information and Knowledge Management, (pp. 1623-1626).

Zschech, P., Heinich, K., Horn, R., & Höschele, D. (2019). Towards a Text-based Recommender System for

Data Mining Method Selection. In 25th American Conference on Information Systems (AMCIS).

