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1 Executive Summary 

This deliverable is part of the Work Package (WP) 4 “Privacy preserving technologies”, of the 
TRUSTS project addressing task 4.4 “Federated Deep Learning methodologies”, task 4.5 
“Transformation of algorithms to privacy-preserving certified” and task 4.3 “Anonymisation and 
de-anonymisation”. It aims to showcase the usage of compute-intense neural networks over 
several nodes under the TRUSTS platform. 
In this deliverable we build upon the work of D4.1 “Algorithms for Privacy-Preserving Data 
Analytics” and describe several solutions for privacy preserving analytics that were developed 
and implemented within TRUSTS, focussing especially on federated deep learning techniques. 
We start with a description of technical solutions for privacy-preserving and federated data 
analytics, where we began with a general review of available solutions. We then highlight some 
of our cryptographic approaches to the problem, where in the first half funding period of 
TRUSTS we have developed prototypes for encrypted transfer learning or efficient private set 
intersection (PSI) that were now refined and used in the use case (UC) trials of TRUSTS. We also 
discuss a way to increase the security of federated learning (FL) by merging it with 
homomorphic encryption (HE), so that also the model updates and gradients are protected. We 
developed a working prototype for encrypted FL and merged our solution with the open-source 
machine learning (ML) suite SystemDS. We then discuss in detail several improvements on the 
ML side, where we have implemented ensemble learning methods, a combination of 
explainability methods with FL based on SHapley Additive exPlanations (SHAP) values and did 
research on superseded FL. Some of these implementations are again integrated with TRUSTS 
and have been used at the corresponding UC trials. 
In the latter part of this deliverable, we focus on anonymisation and de-anonymisation, where 
we have developed de-anonymisation risk analysis models and corresponding anonymisation 
methods. These methods for risk analysis and anonymisation were collected for 5 complex data 
types: tabular, location, textual, invoice and aggregated data. The identification of these 
methods was carried out on the basis of scientific literature. The risk of de-anonymisation is a 
central building block for secure evaluations and with our models we provide an extensive and 
easy to use framework for a general analysis of anonymized data. Also, here our solutions have 
been integrated with the TRUSTS platform. 
 
 
 
 
 
 
 
 



D4.2 Report on the implementation of deep learning algorithms on distributed frameworks 
 

© TRUSTS, 2022  Page | 11  

2 Introduction 

D4.2 “Report on the implementation of deep learning (DL) algorithms on distributed 
frameworks” aims to showcase the usage of compute-intense neural networks over several 
nodes under the TRUSTS platform. The deliverable is part of the WP4 “Privacy preserving 
technologies” where the objective is to investigate, design and improve cryptographically secure 
protocols that enable data analysis of privacy-sensitive data. Consequently, we will focus on 
practical aspects of cryptographic building blocks such as, but not limited to, HE. 
FL is a rather new ML technique (it was first introduced by Google in 2017) that quickly became 
very popular due to several advantages. It allows joint ML evaluations among a plethora of 
clients and at the same time follows a privacy-by-design principle, where the ML algorithm is 
brought to the data and not vice versa. This allows that training and evaluation data remain at 
their local primitives and only model weights and gradients are transmitted to a central server 
where the final model is aggregated from all client input. However, the efficiency of FL also 
comes at a price, in the last years several attacks on FL systems have been published where for 
example the knowledge of the transmitted model gradients is enough to also reconstruct the 
original training data. Thus, one should always be aware of the efficiency-privacy trade-off and 
carefully consider the best method with corresponding security guarantees for each UC.  
 

2.1 Mapping Projects’ Outputs 

Purpose of this section is to map TRUSTS Grand Agreement commitments, both within the 
formal Deliverable and Task description, against the project’s respective outputs and work 
performed. 
 

Table 1: Adherence to TRUSTS GA Deliverable & Tasks Descriptions 

TRUSTS Task Respectiv
e 

Document 
Chapter(s) 

Justification 

T4.4 
Federated 
Deep Learning 
methodologies  

 

This task constitutes a horizontal 
layer of the TRUSTS architecture 
facilitating the federated training 
and utilization of the envisaged 
Deep Learning algorithms, which 
will be incorporated in the 
platform, by distributed devices, 
running on the edge of the 
system’s cloud. A cloud based 

Section 3  
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framework will be deployed 
enabling the distribution, 
training, inference, monitoring 
and update of existing artificial 
intelligence (AI) models to 
selected distributed clients, 
which will be able to utilize local 
isolated content repositories. To 
this end, each federated 
deployment is enabled to use 
private or sensitive datasets for 
the generation of the necessary 
feedback to the TRUSTS 
platform, without endangering 
their unauthorized access or 
exposing the data source.  

 

T4.5 
Transformatio
n of 
algorithms to 
privacy-
preserving 
certified 

This task will strive to convert 
risky algorithms that compromise 
privacy into safe and privacy-
preserving without harming their 
functionality. Various algorithms 
ought to use external sources 
and run computation to execute 
certain functions. The 
development of most algorithms 
is driven by outcome and 
performance, leaving privacy and 
security issues on the least of 
requirements. The challenge is in 
retrofitting and enabling working 
algorithms to perform under the 
desired set of privacy regulations 
without the need of 
redevelopment. 

  

T4.3 
Anonymizatio
n and de-
anonymization 

In this task, we are performed 
de-anonymization risk analysis 
on the provided datasets, in 
order to find out the extent to 
which they comply with privacy 
regulations. After applying de-
anonymization risk analysis and 

Section 4 
Section 5 

Section 4: Anonymization 
and De-Anonymization 
Section 5: Application to 
TRUSTS Platform 
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getting an insight into the data, 
we are going to inquire about the 
necessary anonymization 
measures that need to be taken. 
This task will collaborate with 
T6.1 to ensure that data 
protection rules and principles 
are respected. Since 
anonymization measures distort 
the data, a great challenge in this 
task is to find the golden mean 
between privacy and utility of 
the data; the extent to which 
anonymization measures should 
be applied. During the task, tools 
and guidelines on de-
anonymizing and anonymizing 
the data will be developed, as 
well as measures of the de-
anonymizability of the data and 
conformity to anonymity 
principles. 

TRUSTS Deliverable 

D4.2 Report on the implementation of deep learning algorithms on distributed frameworks  

 

This report will showcase the usage of compute-intense neural networks over several nodes 
under the TRUSTS platform. This deliverable is related to T4.4  
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3 Privacy Preserving Data Analytics  

3.1 Introduction 

Throughout the centuries cryptographic ciphers have been designed to protect stored data or, 
with the emergence of modern information transmission, also to protect data in transmission. 
These scenarios usually follow an all-or-nothing principle where e.g. two parties can access full 
information and outsiders nothing or where only the data owner has full information and 
nobody else. In reality trust relationships are often a lot more complicated and diverse of course 
as we have seen in the previous sections, especially when it comes to outsourcing computations 
or accessing pre-trained ML models.  
In our last report we were focusing on different encryption algorithms that allow collaboration 
over private and sensitive data while preserving data privacy. We introduced CryptoTL 
(currently under submission but also available as preprint2) for example, where we show for the 
first time a cryptographic privacy-preserving transfer learning approach based on HE that is 
efficient and feasible for real-world UCs. In general, one of the major challenges of 
cryptographic privacy-preserving algorithms is the efficiency-privacy trade off - the higher the 
privacy guarantees the lower the computational performance. This challenge has a huge impact 
on adapting those algorithms in the industry, which is seeking for high performance and reliable 
methods to preserve privacy while collaborating over private and sensitive data. 
In order to solve this challenge and to provide an efficient way to collaborate over private and 
sensitive data, we must use those algorithms only on critical junctions while integrating them in 
federated and distributed computation methods that will enable efficient collaboration over 
private and sensitive data while preserving data privacy. 
 
In WP4, we focus on the underlying cryptographic primitives as well as privacy-preserving ML 
methods (transfer and FL) and anonymization. The specific tasks in WP4 are: 
 

● T4.1 Privacy Preserving Data Analytics 
● T4.2 Privacy Preserving Transfer Learning and Classification  
● T4.3 Anonymization and de-anonymization  
● T4.4 Federated Deep Learning methodologies 
● T4.5 Transformation of algorithms to privacy-preserving certified  

 
The topic of this deliverable is related to T4.4, T4.5 integrating with T4.1, T4.3 and contains a 
description of selected methods of FL and modeling that enable privacy preserving of private 
and sensitive data on collaboration. 
When it comes to FL, there are two different types to consider before developing a model. The 
first is horizontal federated learning (HFL), which is introduced in the scenarios where data sets 

                                                           
2
 https://arxiv.org/abs/2205.11935 
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share the same feature space but are different in sample. This type of collaboration is very rare 
when it comes to different companies and different domains, and it is highly common in mobile 
phones UCs. 
The second is vertical federated learning (VFL), which is applicable to the cases where two or 
more data sets share the same sample ID space but differ in feature space. This scenario is much 
more common in the industry. Therefore, we focus on it in the TRUSTS project. 
In order to find the intersection between the collaborating parties’ data sets, without revealing 
the data and while preserving the data privacy, a secure PSI protocol is used as the first stage of 
any collaboration. 
Once the sample Ids are known, the common analytics can be reached via different VFL 
methods as will be described below. 
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3.2 Technical solutions for privacy-preserving and federated data analytics 

FL is a rather new and very popular technique that has been introduced by Google (McMahan et 
al., 2017) and follows the principle of bringing the algorithm to the data in comparison to 
sending data to a remote evaluation somewhere. Thus, it is a decentralized learning protocol 
where private and sensitive data never have to leave their local storage location, instead only 
model parameters are transmitted and updated on a central server (e.g. service provider) or 
cloud. In a first step, local devices (mobile phones, computer nodes, etc.) download the ML 
model from the central server, perform a training step with local data and send back the 
updated weights or model parameters to the server where all contributions are merged 
together. An overview of the current state of the art and future trends can be found in (Kairouz 
et al., 2019; Yang et al., 2019; Li et al., 2020; Bonawitz et al., 2019) for example. FL for general 
purposes has also been integrated into libraries like Tensorflow (TensorflowFL, 2020) or Apache 
SystemDS (Boehm et al., 2020). 

Due to different breakthroughs in recent years and the development of new ML and 
cryptographic approaches the often-illustrated problem that one must give up privacy if you 
want to do data analytics is not true anymore. Several methods allow for more privacy, ranging 
from transfer or federated ML to cryptographic primitives like HE or multi-party computation 
(MPC). The corresponding security guarantees depend on the respective method, usually one 
has to find the UC related trade-off between security and performance or usability.  

We start this section with a review of DL methods for privacy-preserving data processing 
(exemplary for textual data) and continue with cryptographic improvements of classical FL 
systems, where we have implemented a prototype for encrypted federated model updates and 
included it to the open-source ML system Apache SystemDS3. We also briefly summarize the 
application of our library for PSI that was developed within SafeDEED and TRUSTS and allows 
two parties to compute the intersection of their data sets without having to disclose the data to 
each other. PSI is a special-purpose secure MPC protocol and differs from the idea of classical 
FL. However, we have decided to include a short description of our implementation here as 
well, as it fits into the wider context of privacy-preserving data analytics of multiple parties and 
our implementation is also used in the TRUSTS UC trials. We end this section with a discussion 
of further BSOTA ensemble learning methods, as well as vertical and superseded FL and show 
how our solutions and implementations are used within TRUSTS. 

3.2.1 Review of deep learning methods for privacy‑preserving data processing 

DL models often process private and sensitive data, which demands protection against breaches 
and disclosures. Especially data from domains, such as finance, bio-medicine, social media, and 
image, which inherently present private or sensitive content (Sousa & Kern, 2022). The General 
Data Protection Regulation (GDPR) confers the right to privacy to European citizens who 
                                                           
3
 https://systemds.apache.org  

https://systemds.apache.org/
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generate data for DL applications and requires companies that develop and maintain these 
applications to comply with legal terms on data collection, storage, and processing. 
Furthermore, a wide variety of attacks can target deep neural networks, aiming to retrieve 
training data instances or pieces of private information from training datasets, such as 
demographic attributes, location, income, health status, home address, contact details, etc. 
Therefore, privacy preservation is a bottom line for DL model development. 
 
In recent years, privacy-enhancing technologies (PETs) have gained attention in the literature on 
DL because of the ever-increasing number of applications that use these technologies to hinder 
privacy issues for personal data. Noticeable PETs frequently combined with DL include 
differential privacy (DP), adversarial learning, FL, among others. As a result, the literature on 
privacy-preserving DL presents ramifications that make it difficult to have a holistic view of the 
current developments in this research field. This broad literature hardens the search for 
baselines and UC requirements by practitioners in the industry. For this reason, part of the 
efforts performed towards task 4.4 and task 4.5 consisted of conducting an extensive literature 
review on DL methods for privacy-preserving data processing, with a special focus on data in 
natural language format, by Sousa and Kern (2022). 
 

 
Figure 1: Literature search results adapted from Sousa and Kern (2022) 

 

The article titled “How to keep text private? A systematic review of DL methods for privacy-
preserving natural language processing”, published in Artificial Intelligence Review4, followed a 
systematic review structure to guide the collection, selection, and organization of scientific 
papers into categories. First, we constructed search strings using terms related to ‘privacy’, 
‘privacy preservation’, ‘deep learning’, and ‘natural language processing’ (for the full list of 
terms, we recommend the reader to refer to Sousa and Kern (2022)). Second, we used the 
search terms we created to perform searches in the 7 electronic scientific libraries shown in 
Figure 1. These searches returned 2,123 papers in total. Third, we applied a series of inclusion 
and exclusion criteria to reduce the number of papers for the review and mitigate any selection 
bias that could prioritize some works over others unfairly. Finally, after applying such criteria to 
search results and including prominent papers from e-print archive, we had a collection of 63 
works to review as Figure 2 shows. These works, published since 2016, constituted the most 

                                                           
4
Artificial Intelligence Review, accessed on May 25, 2022, <https://www.springer.com/journal/10462>. 

https://www.springer.com/journal/10462
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recent advances on DL-based privacy-preserving natural language processing at the time of 
writing this review. 
 

 
Figure 2: Publication years of the works selected by Sousa and Kern (2022) 

 

Privacy protection for data processing is an endeavour with solution depending on many 
factors, such as computation scenario, utility performance, memory footprint, dataset size, data 
properties, natural language processing (NLP) task, and DL model. As a result, the choice of a 
suitable PET is not solely a problem of protecting the greatest extent of privacy as possible 
because privacy-utility trade-offs can turn a solution feasible for a real-world application or, 
otherwise, impractical. In the past few years, many works have been addressing it for DL and 
text data processing yet lacking categorization. Therefore, Sousa and Kern (2022) proposed a 
taxonomy that organizes this literature and shapes the landscape of DL methods for privacy-
preserving text data processing. 
 
When it comes to privacy-preserving text data processing approaches based on DL, Sousa and 
Kern (2022) have found similarities between methods considering two major factors: the target 
of privacy preservation and the PETs specifically. The first factor determines where privacy is 
assured, such as in the dataset prior to model training and inference, on model components 
during the learning phase, or in post-processing routines. The second factor specifies which 
existing PETs are appropriate for each privacy scenario. For example, encryption is often 
recommended when the server where the data is stored, or another computation party, is no 
longer trusted.  Then, Sousa and Kern (2022) grouped the methods which implement encryption 
schemes for utility tasks of NLP into a group of encryption methods. Additionally, since 
encryption methods are commonly implemented alongside a DL model and remain in place 
during model training and inference, they inserted this group into the category of methods 
whose privacy focus is on the model side, namely trusted methods. This category is divided into 
two sub-categories according to the computation scenarios for which the trusted methods are 
implemented (distributed parties and cloud environments). In a similarly manner, this insight 
was used to construct a taxonomy composed of two levels, three categories, seven sub-
categories, and sixteen groups for the surveyed DL methods and their respective PETs. We 
recommend the reader to refer to Sousa and Kern (2022) for further details in the full 
taxonomy. 
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Besides the categorization of works in the literature, this review has shed light on open 
challenges on DL for privacy-preserving data processing from five perspectives. First, an 
adversary attacker should not be able to trace the private version of an anonymized or de-
identified document. Second, privacy preservation generally comes at the cost of computation 
overheads related to model run-time, memory footprint, and bandwidth consumption. Third, 
dataset size plays an important role in the decision for a PET in real-world DL applications since 
it affects model training and generalization. Further, human biases and algorithmic fairness are 
two critical privacy-related topics in data processing due to the ethical consequences they cause 
on automatic decision-making. Finally, the management of trade-offs arising from the issue of 
exchanging privacy preservation for performance on model tasks. 
 
In the context of TRUSTS, this review relates to two out of three TRUSTS UCs, namely UC2: 
“Agile Marketing through data correlation” and UC3 “Data Acquisition to Improve Customer 
Support Services”. For instance, the solutions developed for these UCs receive data in text 
format, which may feature pieces of private information. Moreover, Sousa and Kern (2022) 
reviewed PETs of interest for TRUSTS, such as encryption, MPC, FL, and DP. This review can be a 
starting point to aid in developing privacy-preserving data processing models and guiding 
successive research. Open challenges on privacy preservation, like threats and computational 
costs related to PETs in DL, are discussed in a holistic view that includes data pre-processing, 
model training and inference, and post-processing routines. Therefore, Sousa and Kern (2022) 
bridge the gap between foundations of privacy-preserving DL methods and industry tasks for 
text data by approximating research directions of TRUSTS to both scientific community and the 
industry. 

3.2.2 Cryptographic solutions for privacy-preserving analytics 

FL has a huge efficiency advantage compared to cryptographic privacy-preserving methods, but 
also the corresponding security guarantees are different. Recently we have seen several attack 
papers that highlight the vulnerability of classical FL methods, where for example knowledge of 
the model weights of a DL network might be sufficient to also reconstruct the corresponding 
training data. Thus, a combination of cryptographic primitives and FL are a possible solution, 
where for example the transmitted model updates are encrypted between client and server. In 
TRUSTS we have implemented several software solutions with focus on such combinations of 
cryptography and ML, in the following we discuss especially our solution for encrypted FL and a 
specific example for secure MPC. 
 
Secure MPC. The problem of outsourcing computations or sharing data is trusting other parties. 
Secure MPC protocols aim to get rid of the trust assumptions and allow several mutually 
distrusting parties to jointly evaluate a public function on their combined input (Rechberger & 
Walch, 2022). The problem of MPC has been around for several decades (Goldreich et al., 1987) 
and first MPC protocols were introduced by Yao (1986). In recent years, MPC has undergone a 
transition from protocols of mostly theoretical interest to having its first practical 
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implementations and instantiation. The challenges involved when designing such protocols are 
the complexity of the calculation (Albrecht et al., 2015), the number of rounds needed by the 
protocol and the necessary assumptions (Garg & Srinivasan, 2018), and the design or choice of 
suitable symmetric primitives (Grassi et al., 2016). MPC protocols also find applications in the 
statistical analysis of federated databases. Platforms such as Sharemind (Bogdanov et al., 2014) 
support the calculation of mean, variance, standard deviation, frequency tables and quantiles, 
as well as hypothesis tests, all in a privacy-preserving manner. Yet, while such platforms exist, 
analysis of large data sets brings them to their limits. These MPC protocols are intrinsically 
interactive approaches. When also considering noninteractive approaches, HE and other 
methods for data aggregation and computation on encrypted data become interesting. 
Homomorphic Encryption. Fully Homomorphic Encryption (FHE) (Gentry, 2009a; Gentry, 2009b) 
is an encryption scheme that evaluates a class of functions or circuits on encrypted data. In this 
case, all data providers encrypt their data sets for a dedicated receiver and send it to a 
dedicated aggregator that then evaluates the function on the ciphertexts but neither learns the 
input data nor the result of the computation. After the aggregation the data is forwarded to the 
receiver. This approach however has the drawback, that it requires to encrypt the data for every 
possible receiver and the aggregation has to be performed independently for each set of 
ciphertexts. These issues can partly be mitigated by homomorphic proxy re-authenticators 
(Derler et al., 2017) that only require re-aggregation, but no additional computations on the 
sender side. This approach lacks the expressiveness in the class of functions that could be 
computed on the encrypted (and signed) data, though. Nevertheless, while in some cases those 
homomorphic schemes may lack the capability to evaluate arbitrary functions, they 
complement secure multiparty computation-based approaches. 

3.2.2.1 Merging Multi-Key Homomorphic Encryption with Federated Deep 
Learning 

There are several compelling UCs for ML that involve highly privacy-sensitive training data. 
Recent research suggests that the gradient updates of FL methods convey a lot of information 
about the training data (Yin et al., 2021). It seems that the privacy gained by employing FL is 
little. However, these compelling UCs for FL on private data would provide huge benefits 
especially regarding computational performance.  
There have been several ideas on how to improve the privacy of FL. Most ideas fall into two 
broad categories: Either employing a secure MPC scheme to the full training function or using 
HE to make the aggregation part of FL oblivious to a server performing the aggregation. The 
former solutions all incur a massive performance and network overhead, rendering them 
impractical. The latter perform better, however, typically the computation overhead is still a 
factor of 1000. Nevertheless, since HE is only necessary for a small fraction of the calculations 
the overall performance is usually within a tolerable scope. HE schemes are designed to protect 
the data from a server where the computation is outsourced. If more than one client is involved, 
the handling of the cryptographic keys is not trivial anymore, since the data of the client should 
now also be protected among the other participants. 
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Recently, a multi-key HE scheme was proposed that offers a solution to this problem and 
protects the data from both the server and other clients (Ma et al., 2022). It is a multi-key 
extension of the well-known CKKS (Cheon et al., 2017) scheme. The clients use an aggregated 
public key to encrypt their data, where the corresponding private keys are kept secret. The 
server computes an encrypted sum of all client data and sends it back to the clients. They 
perform a so-called partial decryption, which can be combined with all other partial decryptions 
into the unencrypted sum without revealing the individual summands. We depict a schematic 
description of FL using multi-key HE in the following image. 
 

 
Figure 3: Schematic depiction of federated learning using multi-key homomorphic encryption 

In order for this to work, the clients need to choose the shared public key in a certain way. This 
mandates a key exchange step before the actual training can start. The keys of the clients can be 
interpreted as an instance of a secret-sharing cryptographic scheme. The shared private key 
corresponding to the shared public key is never directly instantiated. It can be computed from 
different secrets held by the clients. 
 
So, as long as at least one client does not collude with the others it is impossible to get hold of 
the shared private key and break privacy this way. However, if all clients but one collude, they 
can subtract their gradients from the sum of all gradients to get the gradients of the only honest 
client. This is a flaw inherent to every aggregation protocol. The protocol is thus secure if at 
least two clients do not collude. This is a strong privacy improvement over plain FL. 
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We have implemented this protocol in Apache SystemDS (Boehm et al., 2019), an industry-
strength ML software suite. We have made extensive performance tests to quantize the 
performance cost of using HE with FL. One benchmark can be seen in Figure 4 where we 
compare the runtime of FL for different numbers of workers with and without using HE. Our 
results hint that the overall runtime performance on a cluster is less than 10% worse using HE. 
The effectiveness of the learning process is not reduced. Interestingly, the contrary seems to be 
true. The random noise introduced by the HE scheme improves the learning efficiency. This is a 
known effect of adding randomness to the training calculations. The network overhead is 
approximately a factor of three. However, our experiments show that the networking and 
aggregation part do not contribute a lot to the overall runtime. The vast majority of the time is 
spent calculating the gradient updates. This part of the training stays unchanged with the HE 
protocol. We have chosen the parameters of the benchmark in a way that reduces network and 
aggregation overhead to a minimum. 

 
Figure 4: Performance of model training with and without HE for different numbers of workers 

In summary, we show that it is possible to improve the privacy of FL massively without 
introducing a major performance loss. The parameters of the training process need to be 
chosen carefully, but it is certainly possible to arrive at good results. The only downside is higher 
code complexity. Our work proves that there is no technical reason to not employ FL to the 
most sensitive datasets and it opens the door for many new applications of ML. A publication of 
our findings and the corresponding source code is currently in progress. 
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3.2.2.2 Private Set Intersection 

PSI is a special-purpose secure MPC. It allows two participants to compute the intersection of 
their data sets. Thereby, neither participant learns information from the protocol execution, 
except for the data entries in the intersection. For instance, PSI enables two companies to find 
out common customers privately - information that can subsequently be used for a joint 
advertising campaign. PSI is the most mature secure multi-party protocol, and computational 
overhead is small. Therefore, when parties engage in a PSI protocol, they do not have to expect 
significant performance issues. 

We developed a first version of our PSI library within the H2020 project SafeDEED5. This version 
was using a Java PSI library, with the core of the cryptographic operations being executed by a 
component written in C++. While this previous implementation was sufficient for the purpose of 
building a small library, further integration work has shown that the performance and stability 
of the Java PSI library was lacking for enterprise-scale data sets. To combat these issues, a new 
version of the PSI functionality was developed from scratch within TRUSTS in collaboration with 
SafeDEED. The focus was put on performance and reliability. The new version was successfully 
integrated into the demonstrator of SafeDEED6 and the UC Trials of TRUSTS (see corresponding 
report). In addition, the PSI library was added to the EUHubs4Data catalog7. 

In contrast to the first library (v1), we build the second PSI library (v2) in Rust. Rust is a modern 
programming language with focus on performance and reliability. One of the main important 
features of Rust is its focus on memory safety, with its borrow checker component that ensures 
memory safety and removes large classes of common, often security-critical errors such as use-
after-free errors and buffer overflow errors.  

Implementation details. The previous library v1 used the PSI protocols developed for private 
mobile contact discovery (Kales et al., 2019). While these protocols can perform well for large 
set sizes (up to multiple million elements), their relative internal complexity also makes some 
aspects of the implementation more complex. Furthermore, if both datasets are relatively small 
(less than one million elements each), a simpler protocol (Jarecki and Liu, 2010), which is based 
on a variant of Diffie-Hellman key agreement, can perform nearly as well computationally while 
allowing for reduced communication overhead compared to our new protocols. In our 
implementation, we also apply some optimizations to the simpler protocol, namely the use of a 
cuckoo-filter with small false positive probability and cuckoo filter compression. We additionally 
protect the communication channel between the two parties using a TLS connection. For this, 
we use the rustls library, an implementation of TLS in the Rust programming language. Our 
implementation allows for both, self-signed certificates, as well as traditional public-key 
infrastructure. We use TLS version 1.3 per default. 

                                                           
5
 https://safe-deed.eu/  

6
 https://demo.safe-deed.eu/  

7
 https://euhubs4data.eu/services/know-psittacus-privacy-enhancing-technology-for-data-sharing  

https://safe-deed.eu/
https://demo.safe-deed.eu/
https://euhubs4data.eu/services/know-psittacus-privacy-enhancing-technology-for-data-sharing
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3.2.3 Further federated machine learning implementations for TRUSTS 

3.2.3.1 Ensemble Learning/Modelling 
Ensemble methods use multiple learning algorithms to obtain better predictive performance 
compared to any of the constituent learning algorithms individually. 
Following the assumption that the goal of any ML problem is to find a single model that best 
predicts our desired outcome, and since we can often not produce a model that is most 
accurate in all cases, ensemble methods take a myriad of models into account, and average 
these models to produce one final model. Thus the common approach to use ensemble learning 
is to train several models on the same dataset, and aggregate the results using one single 
ensemble model. 
In addition to our other implementations, we have also followed this approach in collaboration 
with partners from UC2, the main idea is also related to FL. We have applied an ensemble 
model to aggregate distributed ML results for predicting/classifying the same problem, trained 
on different local datasets at servers of the involved parties. 
This approach allows parties to collaborate with others in order to jointly solve a problem, 
without exposing their private data to each other and thus preserving the data privacy. 
Depending on the parties’ datasets, and their description, whether they have the same feature 
set or different feature set, there is a UC where the parties should share their trained model 
between each other in order to retrain the ensemble model avoiding the need of sharing their 
data for that purpose. Only the final results of local evaluations are aggregated, the actual 
training data is not shared with others. We also want to point out that the security guarantees 
for methods based on data aggregation (ensemble learning, FL), are different compared to 
encryption methods.  
 

 
Figure 5: High level architecture illustrating how to collaborate using ensemble modeling 

The collaboration between parties can be divided into two scenarios: 
1. The first one is having parties collaborating over different data sets that have the same 
feature set. 
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Table 2 and Table 3 present various stages required to produce such collaboration. 
Training: 

 
Table 2: Collaborating over different data sets with the same feature set– Training stage 

 
Executing query: 

 
Table 3: Collaborating over different data sets with the same feature set – Execution stage 

 
We have run an experiment to illustrate and prove the Ensemble modeling concept in parties’ 
collaboration. In this experiment we used a data set that contains monitored data of a hardware 
system. There are more than 120 monitored parameters (features), thousands of records and a 
single label defining if the system is performing correctly or having a fault.  
The data set of this experiment is Dell’s confidential data, and it is not part of TRUSTS data sets. 
The first experiment illustrates the scenario where parties that have the same feature set but 
different data, want to collaborate in order to improve their classification whether the system is 
performing correctly or having a fault. 
 
We use two different datasets with the same feature set, and follow the steps as described 
above for collaboration, while using a random forest (RF) classification model as the model 
algorithm for each part. The main goal was to illustrate that the precision, recall and the 
receiver operating characteristic curve (ROC) are improved from this collaboration. 
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Each graph in Figure 6 shows the precision, recall, and the ROC of each model based on a single 
dataset. 

 
Figure 6: Experiment results of Ensemble modeling on different data sets having the same feature set - results per party 

 
Additionally, the graph in Figure 7 shows the precision, recall, and the ROC of the ensemble 
model. 
 

 
Figure 7: Experiment results of Ensemble modeling on different data sets having the same feature set – Ensemble results 

As the figures suggest, the ensemble results are improved in all tested sections, namely 
precision, recall, and ROC. 
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2. The second one is having parties collaborating over different data sets that have different 
feature sets. 
Table 4 and Table 5 present the various stages required to produce such collaboration. 
Training: 

 
Table 4: Collaborating over different data sets with different feature set – Training stage 

 
Executing query: 

 
Table 5: Collaborating over different data sets with different feature set – Execution stage 

 
The second experiment we have run, illustrates the scenario where parties that have different 
feature sets and different data referring to the same label, wants to collaborate in order to 
improve their classification whether the system is performing correctly or having a fault. 
Each dataset has different features that hold different monitored parameters of the same 
hardware system. In that case the label that describes faults is the same for all datasets. 
We follow the steps as described above for collaboration, while using a RF classification model 
as the model algorithm that each of the parties was using. The main goal was to illustrate that 
the precision, recall and the ROC are improved from this collaboration. 



D4.2 Report on the implementation of deep learning algorithms on distributed frameworks 
 

© TRUSTS, 2022  Page | 28  

Each graph in Figure 8 shows the precision, recall and the ROC of each model based on a single 
dataset. 
 

 
Figure 8: Experiment results of Ensemble modeling on different data sets having different feature set - results per party 

 

And the graph in Figure 9 shows the precision, recall, and the ROC of the ensemble model. 
 

 
Figure 9: Experiment results of Ensemble modeling on different data sets having different feature set -Ensemble   
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As we can see, the ensemble results are improved in all tested sections: precision, recall, and 
ROC. 
 

3.2.3.2 Vertical Federated Learning using SHAP values 
 

SHAP values - SHAP values interpret the impact of having a certain value for a given feature in 
comparison to the prediction we would make if that feature took some baseline value.  
 
The suggested invention provides a capability to run classification ML algorithms over more 
than one data set belonging to different and, at times, rival parties. Training is performed 
without sharing any of the raw data between the various parties, and the final model provides 
one single prediction while keeping data privacy and security. 
The way to withhold these constraints is by running federated ML models, over each of the data 
sets separately, and then share only the SHAP values generated by each of the models. 
The SHAP values from all the federated ML are used as input to a new classification ML 
algorithm, which provides a single prediction based only on it.  
The following figures (10, 11)  illustrates the solution at a high level: 
 
 

 
Figure 10: The way to collaborate with SHAP values 
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Figure 11: SHAP values collaboration – data flow chart 

There are two main assumptions at the base of the invention. These are realized in many real-
life scenarios: 

1. The labels (which is the “ground truth” for supervised training models) are shared across 
the federated models using PSI or other secured protocol. 

2. A unique key for joining the output from the separate datasets and models is shared 
between the parties.  

 
In general, the solution consists of two main components as shown in figure 12: 
 

1. Federated classification ML algorithm. 
For each of the data sets, a unique classification algorithm is executed on the raw data. 
SHAP values’ results from this model become the input data set for the second 
component. To protect the data, the feature's names are masked by hashing their name. 

 
2. Common classification ML algorithm. 

This component is responsible for running a ML classification algorithm over the unified 
SHAP values results, coming from all of the federated algorithms. 
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Figure 12: SHAP values collaboration – flow chart 

 
Illustrative example: 
 
In this experiment we used a data set that contains monitored data of a hardware system. 
There are more than 120 monitored parameters (features), thousands of records and a single 
label defining if the system is performing correctly or having a fault.  
Each data set was split into 3. 

1. Training data for the federated models. 
2. Test data for each model, whose prediction SHAP values are used as input for training 

the common model. 
3. Second test data, that is used to test the common model. 

 
A RF model was trained on each data set and was tested twice with different data. 
First test was used to get the SHAP values as an input to the common model. Second test was 
done to compare the results between each model to the common model. 
 
The first federated model results are (trained on the original features from dataset 1) depicted 
by Figure 13. 
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Figure 13: Illustrative example - first federated model results 

 
The second federated model results are (trained on the original features from dataset 2) 
depicted by Figure 14. 
 

 
Figure 14: Illustrative example - second federated model results 
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While the common model (trained on SHAP values from federated models) has its results 
depicted by Figure 15. 
 

 
Figure 15: Illustrative example - Common model results 

 
We conclude that for this UC an improvement of the results of the common model trained on 
SHAP values compared to each of the federated model trained on the partial raw data. 
ROC is significantly higher for the common model. While the precision of the common model is 
between the precision of the federated models, the recall is much higher than both of them. 
 

3.2.3.3 Superseded federated learning 
All of the methods mentioned above require full collaboration of the involved parties from the 
training phase up to the inference one. This makes the collaboration too complex, and 
sometimes this complexity even prevents collaborations. 
In this method we want to suggest a way to perform VFL while reducing the complexity of it by 
limiting the collaboration only to the training phase. 
For having this we should use a generative adversarial network (GAN). Given a training set, this 
technique learns to generate new data with the same statistics as the training set. It is a ML 
model in which two neural networks compete with each to generate new, synthetic instances of 
data that can pass as real data - to become more accurate in their predictions.  
GANs typically run unsupervised and use a cooperative zero-sum game framework to learn. 
 
The stages to perform superseded FL are: 
  
The pretraining stage: 
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The pretraining and training stages are almost like the VFL while superseded FL add another 
stage in the middle as described in the flowchart below: 
First the parties use PSI to identify the common sample IDs across their datasets securely and 
privately (as per figure 16 below). 
 
 
 
 
 
 
 

Figure 16: common sample IDs cross datasets 

 
 
Once they find out there is a logical sense to collaborate, each party creates a local model 
relevant to the collaboration purpose. 
For each model, each party creates a GAN that simulates its data depending on the inputs. 
A VFL model is created for all parties. 
Each party shares its own model and a GAN with all involved parties. 
 
 
The inference stage: 
The second stage, the inference, is almost like HVL while superseded FL adds a stage prior the 
inference as described below: 
When a party has a new record and wants to perform inference, it uses all party’s GAN models 
(shared during training) to generate a complete data set.  
The new data record plus the GAN models are used as inputs for all the models of the involved 
parties.  
The results of each model are used as input into the VFL model to perform an inference.  
Since the non overlapped data is simulated, the accuracy of the inference will increase in 
correlation to the number of the overlapped features (as per figure 17 below). 
 
 

   
 

 
  Party A 

Party B 
Party C Same sample IDs 

Figure  SEQ Figure \* ARABIC 12 – Data intersection between 3 parties 
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Figure 17: Superseded Federated Learning flow 

 
Experiment:  
A given dataset contains 100 columns and thousands of records. 
We split it into a train set and a test set and used the RF classification model as the experiment 
model.  
The test set was cloned 2 more times. 
In the first clone we changed 7 different column’s values to contain an approximate value – this 
is to illustrate the option of doing classification when we’ve got missing data. 
In the second clone we used GAN in order to fill the missing data (the same 7 columns as in the 
first clone) with simulated data (which is almost similar to the actual data). 
 
The results for the classification with missing data are, as per figure 18. 
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Figure 18: Experiment Illustration – classification with missing data 

The results of the classification using GAN values are shown in figure 19. 
 

 
Figure 19: Experiment Illustration – classification with GAN data 

 
As we can see, the ROC was upgraded from 0.77 to 0.79 and the precision was increased from 
0.1 to 0.8. 

3.3 Application 

As already mentioned, PSI protocols are considered one of the most mature PETs that involve 
encryption. There exists a public PSI component (https://github.com/Safe-DEED/PSI) developed 

https://github.com/Safe-DEED/PSI
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in the scope of an ongoing EU-Horizon project called Safe-DEED. It can be tested through a 
demonstrator made publically available by Safe-DEED (https://safe-deed.eu/). This PSI 
component consists of a Java PSI library. For the core functionality, it relies on a state-of-the-art 
PSI C++ protocol. The protocol is secure against a malicious client - one who can deviate from 
the protocol - and a semi-honest server. For encryption, the protocol uses symmetric encryption 
schemes specially designed for PSI. This allows a significantly better throughput. More 
specifically, it can process thousands of customers in less than ten seconds. 
  
The Safe-DEED PSI component is intended to be used for joint data usage between different 
enterprises in different domains. The Safe-DEED's PSI component only reports back the 
intersection (identifiers) of two (customer relation) databases. Since UC2 requires not only to 
find the common identifiers but also sending additional data corresponding to these identifiers, 
we had to adapt the protocol. It now fits the needs of UC2 and was already integrated into the 
UC2 workflow. The plan is to test it in the corporate environment soon. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://safe-deed.eu/
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4 Anonymisation and De-Anonymisation  

4.1 Introduction 

This chapter starts with a brief description of the basics of de-anonymization elaborated in D4.1 

which were built upon the results of SafeDEED. Following the structure of D4.1 the new 

contributions are discussed in the individual subchapters and compared with the previous 

results.  

4.1.1 Task background and motivation 
Individuals can be easily identified with their name, address, and social security number. This is 

their so-called personally identifiable information (PII). But even without any PII, it is possible to 

uniquely identify individuals in data sets.  

Sweeney (2000a) for instance showed that 87% of the US population can be uniquely identified 

using only gender, date of birth and ZIP code. Figure 20 demonstrates how this information can 

be used to gather sensitive information. No one can be identified with one of these attributes 

alone, but it is possible when they are combined. These indirect attributes for identifying 

individuals are called quasi-identifier (QID). The task to identify individuals without their PIIs is 

called de-anonymisation. Unlike PIIs, the dangers of QIDs cannot be assessed so easily. For this 

reason, privacy models are applied here.  

The challenge in working with privacy models is that they come with a cost on the dataset’s 

utility. If too much information is removed, then the dataset becomes less useful. The more 

processing steps, the more it becomes distorted. Models are needed to determine the privacy-

utility trade-off. So far only a limited number of corresponding models have been introduced (Li 

et al., 2009; Hsu et al., 2014). 
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Figure 20: The intersection of two semi-publicly available datasets (Sweeney, 2000) 

In TRUSTS we use k-anonymity (Sweeney, 2002a) and its extension l-diversity (Machanavajjhala 

et al., 2007) as privacy models. The goal of k-anonymity is to group together QIDs and have 

groups which are greater than k. With l-diversity as a further development, it is not enough to 

look at the QIDs, it is also extended to the sensitive values. This means that there must be 

different sensitive values greater than l. Figure 21 illustrates this and compares the results of k-

anonymity with k=4 and l-diversity with l=3.  

. 
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Figure 21: Illustration of k-anonymity and l-diversity (Machanavajjhala et. al, 2007) 

There are no clear statements on the levels of anonymity in the GDPR8 when working with 

anonymized data. Only the following statement in Recital 26: “The principles of data protection 

should therefore not apply to anonymous information, … data rendered anonymous in such a 

manner that the data subject is not or no longer identifiable”.  It is therefore only addressed 

that the principles are not applied to anonymous data. However, it does not specify when data 

is anonymous. 

In D4.1 the following 3 requirements for data stewards were formulated in order to show the 

importance of de-anonymisation risk analysis: (1) Raising awareness that datasets are not 

anonymous when the PIIs are removed. Even when no specific privacy models are 

recommended a de-anonymisation risk analysis helps to gain (2) GDPR compliance by showing 

the data controller the risks in their datasets and helps to (3) weigh up the anonymisation 

measures and their scope. 

                                                           
8 https://eur-lex.europa.eu/eli/reg/2016/679/oj 

As described in D4.1, the literature review revealed that there are only two de-anonymisation risk analysis tools available so far: 

ARX (Prasser et. al, 2020) and X2R2 (Hagedoorn et. al, 2020). However, these are currently limited to tabular data and are 

therefore not sufficient for complex data types such as those to be supported in TRUSTS. Furthermore, there are also limitations 

with visualisation of de-anonymisation risks.  

 

https://eur-lex.europa.eu/eli/reg/2016/679/oj


D4.2 Report on the implementation of deep learning algorithms on distributed frameworks 
 

© TRUSTS, 2022  Page | 41  

 

4.1.2 Contribution 
From M6-M18, as mentioned in D4.1, Research Studios Austria implemented under Task 4.3 
“Anonymisation and de-anonymisation”, six risk analysis modules. As already discussed in 
chapter 4.1.1, there are already open source tools available for risk analysis, but only for a 
specific type of datasets (tabular data) and with limited visualisation options.  The modules 
developed addressed these challenges and are supporting different types of data sets including 
corresponding visualisations.  

In addition, the importance of risk analysis when dealing with sensitive data sets and how this 
can be identified was pointed out. This served as a starting point for the progress from M19-
M32. Built on this, a literature review was conducted to determine which anonymisation 
methods are suitable for the different types of datasets built on k-anonymity and l-diversity 
specifications.  

FORTH continued to develop the application while Research Studios Austria took care of the 
identification and development of suitable anonymisation methods. The existing application 
was expanded in order to be able to apply these anonymisation methods. Appropriate 
algorithms for all data types have been identified and will be implemented by the end of the 
project. The anonymisation process for tabular data based on generalisation hierarchies has 
already been integrated into the platform and can already be used (see Section 4.3).  

Our contributions were the expansion of the existing application with appropriate 
anonymisation methods. This process was divided into the following two aspects: 

● The risk analysis should serve as input for the anonymisation process. With the goal to 
ensure that only the most necessary changes are applied to the data, thus minimising 
the trade-off between privacy and utility. During the literature research, it was taken 
into account that the proposed methods are suitable for an interaction with privacy 
models like k-anonymity and l-diversity.  

● A characteristic of the already implemented method for de-anonymisation risk analysis is 
the support of complex and multidimensional data. This was the identified limitation of 
the existing state-of-the-art tools. Therefore, the second aspect was that the 
anonymisation process must support these different types of data sets. This has already 
been partially implemented and the process is described in detail in section 4.3.  

The TRUSTS project builds on existing parts of the SafeDEED project. In D4.1, the differences of 
the two projects have been pointed out. In summary, the solutions of SafeDEED were taken as a 
starting point and were then extended. The code was generalised and new modules were 
added.  
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The solutions developed in SafeDEED were adopted and redesigned to support complex and 
multidimensional types of datasets. New modules were developed for TRUSTS, such as the 
algorithm for spatiotemporal data and textual data. All these algorithms and methods were 
integrated into one application. The application, which was developed by FORTH, serves on the 
one hand as a data management platform and on the other hand as front end for the risk 
analysis methods developed by Research Studios Austria. The aim is to integrate the application 
as part of the TRUSTS platform. 

The contributions for M19-M32 described here in D4.2 are the identification of algorithms and 
methods suitable for anonymisation as a supplement for the risk analysis. The objective of the 
literature review was to find algorithms/methods that: 

● are in accordance to the TRUSTS objectives 
● can be integrated in the existing TRUSTS environment 
● are suitable for the data formats supported by risk analysis 
● focus on improved trade-off of efficiency vs. information loss   

Developments from SafeDEED were also applied here: Adapted from Bampoulidis et al. (2019), 
the generalisation with hierarchies is provided as a method for anonymisation. This approach is 
suitable for tabular data and was originally implemented as a standalone Java application. The 
described features from the paper were reimplemented as Python modules and integrated into 
the existing application. For this purpose, the Python module was containerised and added to 
the existing multi-container application.  

As a result of the literature review, anonymisation concepts based on the risk analysis methods 
were identified. This includes solutions for all complex and multidimensional data types and is 
already processed as prototypes. Slijepčević et al. (2021) are describing in their paper four 
potential strategies for anonymisation of QIDs: (1) generalisation, where data is anonymised 
based on pre-defined hierarchies, (2) suppression which is the full removal of the data points, 
(3) bucketization (Xiao & Tao, 2006) where data is grouped into equal sized buckets and (4) 
microaggregation (Domingo-Ferrer & Mateo-Sanz, 2002) where data is grouped in combination 
with aggregation of the values.  

Generalisation and suppression as anonymisation techniques offer a high level of protection for 
private data (Kabir et al., 2011). However, anonymisation always has a trade-off and working 
with generalisation hierarchies can also lead to a high loss of information (Bampoulidis et al., 
2019; Fung et al. 2005; Iyengar, 2002; LeFevre, 2005; Sweeney, 2002b). For this reason, it is 
useful if several options are offered in order to be able to choose the best variant for the 
respective application.  

Full suppression will be provided for each type of dataset but should only be used as a last 
resort since any information from a column will be lost which means a high cost for the utility of 
the dataset. For textual data, a method will be offered that is not discussed in the paper by 
Slijepčević (2019), but which can be understood as a targeted use of suppression. In this case, 
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the named entities in the texts are identified within the framework of natural language 
processing (NLP) with the help of a pretrained AI and selectively removed from the data set. The 
following concepts have been selected for the respective data sets:  

● Aggregated data (Hierarchies and Microaggregation) 
● Tabular data (Hierarchies) 
● Invoice data (Hierarchies, Bucketization and Clustering) 
● Textual data (Named entity recognition and sentiment analysis) 
● Location data (Clustering) 

4.2 De-Anonymisation Risk Analysis and Anonymisation Modules 
In this section, the de-anonymisation risk analysis module and the appropriate anonymisation 
methods are described. These methods have been identified through a literature review and 
have already been evaluated using prototypes. The structure of this section is based on the 
different types of datasets considered. The risk analysis method is described along with the 
appropriate anonymisation method. Generalisation with hierarchies has been implemented and 
the workflow is described in section 4.3.  

4.2.1 Privacy models and anonymisation strategies 

The de-anonymisation risk analysis module is based on the two privacy models k-anonymity and 
l-diversity (see section 4.1.1 for a description of these two models). Figure 22 is a screenshot of 
the application and shows the result of a risk analysis. Here you can see that the higher the 
number of QIDs, the higher the probability of de-anonymisation. If it is still ~50% with 2 QIs, it 
rises to ~80% with 3 QIs and to 88% with 11 QIs.  
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Figure 22: Screenshot of the k-anonymity risk analysis module on a contracts datasets for k=2 

The risk analysis module builds on the results of the SafeDEED project (Bampoulidis, 2020a). The 
limitation in this first version was that k could only take the value 2. This was extended within 
the scope of this task and k can now have any value. Furthermore, visualisations of the results 
were added. These visualisation are interactive and were implemented with the two Javascript 
libraries plotly9 and leaflet10. Figure 22 is a screenshot from D4.1. The descriptions from this 
earlier version of the application were not self-explanatory. Therefore, they have been adapted 
and improved. Figure 23 shows the more descriptive plot tooltips and legends.  

                                                           
9
 https://plotly.com/javascript/ 

10
 https://leafletjs.com/ 
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Figure 23: Examples of enhanced visualisations with more descriptive tooltips and legends 

 

In addition to the check for k-Anonymity, tabular data is also checked for l-Diversity compliance. 

This privacy model builds on k-Anonymity and expands it to include the dimension of sensitive 

attributes.  This enables a more precise analysis and reduces weaknesses of k-anonymity. A 

detailed description can be found in section 4.1.1. Figure 24 is a screenshot of the application 

and demonstrates the visualisation of the results of an analysis of the risk analysis module of 

l=2. 
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Figure 24: Screenshot of the l-diversity risk analysis module for l=2 with enhanced UI 

4.2.2 Tabular Data 

In addition to complex and multidimensional types of data sets (see the following sections), 
datasets without special columns, such as time, location and aggregated values, so-called 
tabular data, are also supported. In the application, both k-Anonymity (see Figure 22) and l-
Diversity (see Figure 24) are provided for the de-anonymisation risk analysis.  

As a newly added extension, the current version of the application also offers an option for 
anonymisation of tabular data. This is again based on a result of the SafeDEEDs project. In their 
paper Bampoulidis et al (2019) PrioPrivacy, a tool developed for local recoding of tabular data is 
presented. They are also describing the concept of anonymisation with hierarchies (see Figure 
25). The tool was programmed as a standalone solution in Java. For the TRUSTS application, 
concepts were taken from the paper and transferred into Python code. 

 

Figure 25: Example hierarchies from Bampoulidis et al (2019) 

4.2.3 Location Data 

This section discusses location data, especially spatiotemporal data which contains information 
of individuals from two dimensions: the (1) geographical level, i.e. the location, and the (2) time 
level. In the first phase of the project the possibilities for risk analysis were identified and 
implemented. Since D4.1 the user interface (UI) has been revised. The visualisations were 
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improved with more descriptive plot tooltips and legends. Figure 26 shows the enhanced 
application’s output of such an analysis. The output is a map in which all points are displayed 
and colour coded. The colour scale goes from green to red where green means safe and red 
unsafe. With this information, the data controller gets an overview of the risk and can then 
weigh up whether anonymisation of the data is necessary.  

 

Figure 26: Screenshot of the enhanced output for spatiotemporal data risk analysis (gowalla dataset) 

In the finished application, this data can be anonymised using clustering. The number of clusters 
can be chosen based on the desired level of k and several clustering algorithms are then 
applied. Figure 27 demonstrates output taken from the prototype.  
 

 

Figure 27: Demonstration of different cluster methods (6 clusters); Different countries in Europe and Africa 

 

 

4.2.4 Textual Data 

Textual data refers to data sets with non-normalised long texts generated by individuals. These 
can be reviews, social media posts or the most prominent variant, search logs. In order to 
calculate the similarity of texts or, in the case of this application, to be able to draw conclusions 
about the same person we use the Jaccard Similarity.  
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Jaccard similarity is used to calculate the similarity of two sentences. A value between 0 and 1 is 
calculated, increasing values signify high text similarity. If none or only a few texts are similar it 
means there are only individual users in the dataset and no clusters of similar users can be 
formed. The data cannot be classified as safe.  Figure 28 illustrates an output of the application. 
Here, the risk analysis was applied to two different data sets. The AOL dataset, which contains 
search engine search texts, and the Amazon dataset11, which contains product reviews. Red 
means no similarities, a value of 0 for Jaccard Similarity, and green a value of 1. These results 
show that there are no similar texts in the AOL dataset and that it is therefore not safe to 
publish. The Amazon dataset has certain similarities and it is therefore (partly) safe to publish, 
as clusters of similar users can be formed.  

Two different natural language processing (NLP) methods are being implemented as 
anonymisation techniques for textual data:  

1. Sentiment analysis: An automatic evaluation of texts with the aim of recognising the 
sentiment/opinion of a text as positive or negative. Instead of the whole text, only the 
information about positivity and negativity remains in the dataset.  

2. Automatic identifying of named entities in texts: The data controller can determine 
which types of named entities are automatically recognised and replaced. For example, 
all locations or persons can be identified with the help of an AI and then removed.  

                                                           
11

 https://jmcauley.ucsd.edu/data/amazon/ 
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Figure 28: Screenshot of textual data risk analysis (AOL search logs and Amazon reviews) 
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4.2.5 Invoice Data 

Invoice data, also financial transactions data is a type of dataset that contains information about 
transactions and payments of individuals including the time dimension. The basis for the risk 
analysis was a module developed within the Safe-DEED project (Bampoulidis, 2020a). Figure 29 
shows the output of the risk analysis in the application. The UI was revised after D4.1 to include 
more descriptive tooltips and legends. The X-axis represents the number of data points and the 
Y-axis represents time. The individual time points are represented as points. The scale goes 
from green (safe) to red (unsafe) based on the specified privacy notion.  

 

 

Figure 29: Screenshot of financial transactions data risk analysis with enhanced UI 

The results of the risk analysis can now serve as input for the anonymisation task. The module 
will offer three different options.  

● Generalisation, where the data controller can manually create a hierarchy based on the 
results of the risk analysis. 

● Bucketisation, where the financial values are grouped together in optimal sized bins.  
● Time series clustering, where not the individual values are considered, but the whole 

time series. The data controller can determine the number of clusters depending on the 
k or l value and similar time series are grouped together.  

Figure 30 shows an example of a clustering of time series (adapted from Petitjean et al. (2011)) 
of one of the developed prototypes. 
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Figure 30: Time series clustering demonstration with stock data adapted from Petitjean et al. (2011) 

 

4.2.6 Aggregated Data 

Aggregation-based data is data that contains aggregate values, such as sum, count, and average, 
about individuals. If the aggregate values are low and there is another sensitive aggregate 
attribute, then there could be a privacy breach. Figure 31 is an example output of this risk 
analysis module: the aggregate values of a dataset visualised in a bar plot with a horizontal line 
(k) representing the minimum acceptable value of an aggregation attribute. In this case, the 
records containing the attribute “shares” being below the acceptable value should be removed 
if there is another sensitive attribute (e.g., sum of income). The core of the risk analysis module 
was developed in Safe-DEED (Bampoulidis, 2020a) and modified to work with the application. 
The anonymisation module will provide two options:  

1. Full suppression, where as soon as the data exceeds the value (k), it will be deleted 
2. Microaggregation, in which the data is grouped and aggregated again.   

 

 

Figure 31: Screenshot of the aggregation-based data risk analysis 
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4.3 Application 
The application is a toolkit designed and developed to incorporate the aforementioned 
mechanisms while also providing end users with an intuitive and usable UI. It offers a solution 
for importing datasets, configuring risk analysis or anonymization processes based on dataset 
type, queuing and parallelizing such processes, storing and displaying risk analysis findings, and 
creating anonymized datasets.  
 
For this version of the deliverable, we provide the overall description of the application, 
including architecture and UI components, as it has been updated to employ the anonymization 
mechanisms described above. Furthermore, the description below includes the UI 
improvements done during the second half of the project. 
 

4.3.1 Supported Datasets 

 
The files that should be used for the de-anonymization risk analysis and anonymization process 
should be formatted according to the following conventions. 

● File location and separator/delimiter: The file has to follow the .CSV format. The 
delimiter type should also be one of the following (special)-characters: comma, 
semicolon or tab. 

● Data type: The data types that are currently supported are: tabular, aggregated, financial 
transactions, textual and spatiotemporal data. 

● Title and short Description: For each dataset that is imported into the application a title 
and a short description should be specified. 

The data and metadata related to the datasets imported to the application are all stored locally, 
in the user’s machine which is running the application. 

4.3.2 Application Architecture 

The application is being developed in a loosely coupled manner, where every component is a 
standalone entity in a separate docker image. All the components/images needed for the 
application are deployed through a single docker-compose file. 

The main components of the app’s architecture are the following: 

● The application Frontend/GUI 
● The Coordinator Server, which is responsible for the necessary backend operations 

regarding the coordination of the backend components according to specific workflows. 
● The Risk Analysis, as well as the recently introduced Anonymization Server, which 

undertake the ingestion of the dataset as well as the execution of the risk analysis and 
anonymization processes, that are described in the previous sub-sections.  
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● The Data Management System that connects the components (metadata) and stores the 
results of each risk analysis process. 

 

Figure 32: Application architecture diagram 

The application architecture as well as the information flow between the application’s 
components are depicted in Figure 32. The information flow is triggered as per the users’ 
interaction with the application’s frontend UI as described in the next sub-section. Specifically, 
the overall workflow is as follows: 

1. Dataset Metadata: The user chooses a dataset to be “uploaded” (imported) and sets 
some metadata for it (the dataset’s .CSV file and delimiter, title, sort description and type of 
the data) by filling out the upload page’s form. 

2. Dataset unique Id: Through a REST request the frontend/GUI sends these metadata to 
the Data Management System, where a new document (that contains them) is created in 
the index responsible for storing the metadata related to datasets. 
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3. Dataset File path, delimiter and unique Id: A REST request is also sent to the Coordinator 
Server with the unique Id of the newly created document (which contains the dataset's 
metadata), as well as the dataset's file path and delimiter. 

4. Dataset columns: After receiving the metadata, the Coordinator Server reads the .CSV file 
and extracts the names of the columns as well as the total number of records contained in 
the file. Then, with the use of the unique Id, it updates the dataset’s document in the Data 
Management System, thus completing the collection of all the necessary metadata for the 
dataset. 

5. Request for importing a new dataset: With the dataset’s metadata already collected, a 
REST request is sent to the Risk Analysis and Anonymization Servers APIs in order for the 
import of the dataset to start. 

6. Update dataset metadata for upload status: After the process of importing the dataset is 
completed, the server updates the dataset’s metadata. At this point, the dataset upload is 
complete and the user is able to initiate a new risk analysis or anonymization process. 

7. Process Metadata: From the app’s GUI, a user can initiate a process (risk analysis or 
anonymization) for a specific dataset and fill out the necessary parameters in the respective 
process page. After all the necessary metadata is set for the process, a new document is 
created in the index responsible for that type of process in the Data Management System. 

8. Request for a Risk Analysis / Anonymization process: After the document containing the 
metadata of a process is created in the Data Management System, a REST Request is sent to 
the Risk Analysis or Anonymization Servers (depending on the type of the process) 
containing the unique Id of the process that needs to be initiated. 

9. Get the process and dataset metadata: With the use of the process’ unique Id, the server 
retrieves the metadata from the Data Management System and initiates the process based 
on the parameters specified. 

10.  Update the process status: If the process was a risk analysis, the Risk Analysis Server 
creates a new index in the Data Management System and stores the results once they are 
ready. When this operation is completed, the server changes the process's status to 
"Completed," and the user can review the results from the process's page. If the process 
was an anonymization, the Anonymization Server creates a new file in the user's datasets 
folder containing the newly anonymized dataset and sets the process status to "Completed" 
after the process finishes. 

11. Monitoring search engine via a GUI: For the purposes of monitoring the Data 
Management System (both for the app’s development and maintenance) a Kibana instance 
is deployed. With Kibana, a user (with the appropriate access rights) is able to review with 
relative ease the status of both the Elasticsearch node and the indices stored in it. 
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4.3.3 Application implementation 

For the development of this application, a variety of modern frameworks, runtime 
environments and Databases were used.  

For the frontend / graphical user interface (GUI) of the application, the framework used is 
Angular v10. Angular is a widely used, TypeScript-based, open-source web app framework 
capable of creating robust web applications. The Data Management System is based on the 
Elastic Stack12 which comprises three fundamental components: Elasticsearch, Logstash, and 
Kibana. Elasticsearch is a distributed, free and open search and analytics engine for all types of 
data, built on Apache Lucene and is more than capable of meeting the storing as well as the 
communication requirements of the application. Logstash is a free and open server-side data 
processing pipeline that ingests data from a multitude of sources, transforms it, and then sends 
it to the Elastic stack. In the context of the application, Logstash is used to ingest to an 
Elasticsearch index the logs of the deployed Elasticsearch node. Lastly, Kibana is a free and open 
user interface that lets a user visualize Elasticsearch data and navigate the Elastic Stack and it is 
used for monitoring the Elasticsearch node deployed. 

The Coordinator Server was developed using the Node.js13 cross-platform. Node.js is a 
JavaScript runtime environment, built on Chrome's V8 JavaScript engine. Specifically, Node.js is 
used as an intermediate server (with the use of the back-end, web application framework 
Express.js) for the communication between the Angular framework and the Elasticsearch node. 

The Risk Analysis Server is a Java component based on the Spring Boot framework14. For storing 
and efficient querying of the data locally, before it ingests the results to the data management 
system, the SQLite15 database is used. 

The Anonymization Server is programmed in Python with the use of Redis16, an open source, in-
memory data store. It consists of three components: the (1) communication component, which 
uses the Python library Flask17 to provide an API for communication with the search engine. The 
(2) message queue, in which the requests of the search engine are temporarily stored. A redis 
database for all requests in order to process them asynchronously. This means that long-
running processes do not block the entire system and it also serves as a load balancer. Requests 
are no longer processed directly, therefore there is no restriction on the number of 
simultaneous requests. The (3) Anonymisation Toolkit itself, which applies the anonymisation 
methods. Chapter 4.3 gives an overview of the provided anonymisation methods. 

                                                           
12

 https://www.elastic.co/what-is/elasticsearch  
13

 https://nodejs.org/en/  
14

 https://spring.io/projects/spring-boot  
15

 https://www.sqlite.org/index.html  
16

 https://redis.io/   
17

 https://flask.palletsprojects.com/en/2.1.x/  

https://www.elastic.co/what-is/elasticsearch
https://nodejs.org/en/
https://spring.io/projects/spring-boot
https://www.sqlite.org/index.html
https://redis.io/
https://flask.palletsprojects.com/en/2.1.x/
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As already mentioned, the application is deployed as a Docker18 container stack. Docker is an 
open platform for developing, shipping, and running applications that enables the separation of 
the application from the infrastructure. All the application’s components are housed in separate 
docker images and deployed with a single docker-compose file. In this way, each component of 
the application is independent of the others yet capable of communicating with them through 
well-defined API’s. 

4.3.4 Application functionality 

After the successful deployment of the application, a user can have access to the GUI by visiting 
the specified link on an internet browser. Upon entry, the user will be asked for their credentials 
in order to log in. After a successful authentication, the user is able to view all the imported 
datasets or to upload a new one. For each dataset, the user can initiate either a risk analysis or 
an anonymization process. After filling out all the required parameters, the chosen process can 
commence. All the previously initiated processes, depending on their type, can be found in the 
respective processing queues. When a process is completed, the user is capable of viewing the 
results of the process in the respective results page.  

The next subsections detail the functionality that a user can accomplish through the GUI. 

  

User Login 

The user can log in to the application by entering their TRUSTS credentials (see Figure 33). If the 
authentication process succeeds, they proceed to the Datasets Page. 

                                                           
18

 https://www.docker.com/  

https://www.docker.com/
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Figure 33: Sign in Page 

At this stage of the application development, the authentication process is conducted through a 
local database. In later stages of development, the authentication will be achieved through the 
TRUSTS platform user authentication mechanisms. 

After a successful authentication, the user is directed to the Datasets page. All the pages offered 
by the application follow the same design pattern, which consists of three components: the 
vertical navigation menu (on the left sidebar), the header and the content of the page (see 
Figure 34). 

From the vertical menu, the user can navigate through the main functionality of the application, 
namely: Datasets, Risk Analysis, Anonymization and Processing Queue. At the top of each page, 
two buttons are located, the one for viewing the notifications of the user and the other for 
viewing the profile. The rest of the space, depending on the page, will display the appropriate 
content. 

Datasets 

In the Datasets page, a user is able to view all the datasets imported to the application. There 
are two viewing options: the card view (set by default) and the list view. The user can specify 
the desired view with the use of the buttons located at the top-left of the page (below the user 
profile button). 
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Figure 34: Datasets Page – card view 

For each dataset, the title, description and last time of a Risk Analysis or Anonymization process 
run are displayed. From the options menu (three blue dots) the user has the ability to edit, 
delete or initiate a risk analysis or anonymization process for a dataset. While a dataset is being 
uploaded, the user is only able to edit or delete it. After the uploading process is completed, the 
options for a Risk Analysis or an Anonymization are enabled. 

Upload a Dataset 

A user can import a new dataset by selecting the “Upload Dataset” button located at the top-
left of the Datasets page (below Figure 35 offers the user profile image). 
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Figure 35: Upload Dataset Page 

In the Upload Dataset Page, a user can specify the .CSV file containing the dataset, the dataset’s 
title and short description, delimiter/separator of the .CSV file as well as the data type of the 
dataset. After filling out this information, the importing process starts. Until this process is 
finished, the user is only able to edit or delete the dataset. After the completion of the process, 
the Risk Analysis and Anonymization options are enabled. 

Edit a dataset 

  

Figure 36: Dataset Info Page 
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After selecting the “Edit” option of a dataset, the user is directed to the dataset’s info page (see 
Figure 36). In this page, all the basic information of the dataset is displayed. The user can edit 
the dataset’s title and short description by selecting the pen icon beside either the title or the 
short description. 

New Risk Analysis process 

To start a new Risk Analysis process, a user must choose a dataset from the Datasets page and 
then select the “Run Now” button, or, from the dataset’s options menu, the “Risk Analysis” 
option. 

 

Figure 37: Risk Analysis Page 
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Figure 38: De-anonymization Risk Analysis Page - The results of the process configured in Figure 37 

Then, the user is redirected to the Risk Analysis page (see Figure 37). In the Risk Analysis page, 
depending on the data type of the dataset, the user will have to select an appropriate Risk 
Analysis method. Then, depending on the risk analysis method selected, the user will have to set 
the appropriate Attributes and Parameters that pertain to the method. After the required fields 
are filled out, the user can initiate the risk analysis process and get the results (see Figure 38). 

New Anonymization process 

With this version of the application a user is now able to anonymize datasets. In order to start a 
new Anonymization process, a user has to choose a dataset from the Datasets page and then 
select the “Run Now” button, or, from the dataset’s options menu, the “Anonymization” option. 
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Figure 39: Anonymization Page 

Then, the user is redirected to the Anonymization page (see Figure 39). In the Anonymization 
page, in a similar fashion to that of the risk analysis processes and depending on the type of the 
dataset selected, the user will have to select the appropriate attributes, parameters and files 
that pertain to the method. The user can choose between Hierarchy and Smart Anonymization 
methods. After the required fields are filled out, the user can initiate the anonymization 
process. 

Processing queue 

After the initiation of a new risk analysis or anonymization process, the user is redirected to the 
Processing Queue page (see Figure 40). In this page, previously initiated processes are 
displayed. 
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Figure 40: Processing Queue Page 

For each process in the queue, information about the status (“Running”, “Completed” or 
“Canceled”), the name of the method used and the times of when the process started and when 
it ended are displayed. If a user wants to view all past processes, they can select the “See All” 
button beside each type of process (risk analysis or anonymization) and a complete listing will 
be displayed. 

A user can view the results of a process by: 

● Selecting the last process of a specific dataset from the Datasets page 
● Selecting a process from either the Risk Analysis or Anonymization pages 
● Selecting a process from the Processing Queue page 

After choosing a process, with one of the methods above, the user is then redirected to the 
appropriate results page. 

4.3.5 Risk Analysis results 

After selecting a Risk Analysis process, the user is redirected to the De-anonymization Risk 
Analysis page (see Figure 41). 
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Figure 41: De-anonymization Risk Analysis Page 

In this page, information regarding a specific risk analysis process is provided including 
metadata of the dataset under inspection. While the process’ status is “Running” the user can 
only view the information related to the specific process and dataset. When the status changes 
to “Completed”, the results of the process are displayed in the appropriate form (e.g. diagram 
or map) for the user to review them. 

4.3.6 Anonymization Results 

After the completion of an Anonymization process, users can find the resulting, anonymized, 
dataset in the user datasets folder in their filesystem. 

UI Improvements: Updated plots have been implemented for the risk analysis visualizations of 
the application. Specifically, in the risk analysis processes' resulting plots for datasets of financial 
transactions and spatiotemporal types, the privacy notion of the process is now being displayed 
(see Figure 37), in addition to the process results, in order for the user to better understand the 
plot's insights. Furthermore, all of the risk analysis plots have been revised to include more 
detailed tooltips, legends, and more user-friendly colour choices (see Figures 38 and 41). 

Publications: Task 4.3 has produced one publication (Bampoulidis et. al, 2020b), where we 
identified the challenges of de-anonymisation and anonymisation in data sharing, which we are 
addressing in the current task. 
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5 Application to TRUSTS Platform 

In this section, we will first give an overview of the TRUSTS platform (see deliverable D2.6 and 
follow-ups for more details). Then we will elaborate on some of the above-mentioned 
technologies that are used to enable UC2.  
 

5.1 TRUSTS Platform Infrastructure 

The TRUSTS platform is a set of nodes, each owned by a different organization and running on 
its own infrastructure. A critical tenet of the design of TRUSTS is that assets like data, services, 
or applications should not leave the owner's premises without a contract and without additional 
means to make transactions more trustworthy. This is exceptionally well suited for the case 
when organizations wish to make use of data owned by parties with whom they cannot share 
data themselves for commercial or legal reasons. Likewise, it allows organizations to make their 
data useful to others and thus monetizable without actually transferring the data. 
 
From the architectural point of view, each organization runs a TRUSTS node that contains 
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● A platform interfaces. 
● A trusted connector instance. 
● Usage control systems. 
● A smart contract executor. 

 
In general, the architecture supports the following functionalities. First, the data providers keep 
their assets, only transferring the data after signing and settling a contract. In addition, every 
access to an asset depends on checking for authorization against a clearinghouse whose 
integrity is guaranteed by means of distributed ledger technologies. Finally, confidentiality and 
integrity of the communication between the systems of different organizations are done 
through secure communication protocols, and each communication event can be subject to the 
above-mentioned access control policies. 
 
In particular, the organizations can make use of these components in the following two ways. 
They can purchase an application that will process their data on their premises. In this way, they 
can use the methods developed by others but still keep complete control of their data. 
Secondly, they can purchase access to a service. In this way, they can leverage the technology 
and data that other organizations possess but which, for whatever reasons, can not be 
transferred to them. 
 
By combining these two opportunities, TRUSTS can support privacy-preserving computations. In 
particular, parties can install applications that access their data on their premises. Each of these 
applications can communicate among themselves through channels that are secured and 
prevent eavesdropping via the use of cryptographic protocols. Also, all transactions can be 
logged and checked against contractual agreements. It is further possible to transfer the 
applications (the images themselves), and their usage can be subject to contractual terms. 

5.2 TRUSTS Platform and Secure Computation 

When it comes to personal data, common trading practices for non-private data are prohibited, 

so TRUSTS becomes a data market for non-private data and services market and services 

provider for personal private data. 

We were able to map out ways (architecture) to collaborate over personal private data and also 

enable running advanced analytics, developed by third party’s companies on personal private 

data, all while complying with data protection regulations, and preserving full privacy. 

For example, in the architecture below, we describe a way to collaborate over private personal 

data using HE and Spooky shared encryption key. 
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Figure 42: High level architecture of collaborating over private personal data using HE and Spooky shared encryption key 

 

On the other hand, there is an option to use the TRUSTS cloud services as a service provider to 

the data owners, where all of the computations will be done on TRUSTS services. 

In the example below, we are using MPC protocol, to collaborate over private sensitive data, 

while all of the computation is done on TRUSTS servers. 

 

Figure 43: High level architecture of MPC protocol, to collaborate over private sensitive data, while all of the computation is 
done on TRUSTS servers 
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5.3 UC2 

According to the TRUSTS platform architecture, the developed application will be available 
through the App Store of the platform, from which the users will be able to download and run 
locally on their premises. The figure below gives an overview of the usage of the application. 
Given two actors – a data seller and a data buyer – the usage flow is as follows: 

1. The data seller and the data buyer download the application from the TRUSTS platform 

to their premises. The application needs to be executed on the TRUSTS users’ premises 

because non-anonymised, privacy-sensitive, personal data are processed by the 

application, and such data should not be uploaded to the platform. 

2. The data seller imports their non-anonymised, privacy-sensitive, personal data to the 

application. 

3. The data seller uses the de-anonymisation risk analysis modules. 

4. The data seller uses the anonymisation modules. 

5. The data seller transfers the anonymised data to the data buyer. This will be feasible 

using the capabilities of the IDS Trusted Connector. 

 

Figure 44: T4.3 application usage flow 

UC2 comprises two companies (NOVA and PB) that will exchange data through a PSI protocol. 
The data that will be exchanged are tabular (i.e., one row corresponds to one individual), 
corresponding to information about customers. The UC2 partners would follow steps 1., 2., 3., 
and, if necessary, 4., of the usage flow described above. Since the data to be exchanged is 
tabular, the suitable de-anonymisation risk analysis modules are K-Anonymity and L-Diversity (if 
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there exists a sensitive attribute in the data). If the UC partners are content with the de-
anonymisation risks in their datasets, then they may proceed to executing the PSI protocol; if 
not, then they may use the anonymisation modules, which will be developed in the future, prior 
to executing the PSI protocol. 

 

 
Figure 45: Roles and Interaction in the Industrial Data Space 

 

 
Figure 46: The TRUSTS Architecture 
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6 Conclusions and Next Actions 

This report provides an overview as well as concrete recommendations regarding privacy by 
design. It offers an insight into the most promising privacy-enhancing techniques and algorithms 
based on cryptography. Furthermore, the applicability of these techniques was demonstrated 
by choosing concrete protocols and algorithms for UC1 and UC2. Those protocols and 
algorithms will be developed further to meet the UC needs. 
 
The PSI protocol will be completely redesigned. This will allow achieving a tighter integration to 
the TRUSTS platform. It will also improve the technology readiness level as well as performance. 
As for now, it is planned to use Rust, which is a state-of-the-art programming language designed 
for performance and safety. 

While the first part of task 4.3 focused on risk analysis, the second part now deals with suitable 
anonymisation methods. These methods did not yet exist in this form and are implemented 
with state-of-the-art concepts. This includes several applications of Natural Language Processing 
(NLP) and Unsupervised Learning. 

As already stated in the first part of the task, the existing anonymisation tools, such as ARX 
(Prasser et. al, 2020) and Amnesia19, do not yet support complex, high-dimensional data. For 
this reason, they had to be re-implemented based on current scientific literature. 

The finished application will support the following types of datasets, from risk analysis to 
anonymisation: 

● Tabular data, i.e. the classic type of datasets in table form. Here, the data can be 
anonymised with the help of predefined hierarchies. 

● Aggregated data, i.e. any data with aggregated values, such as sum, count and average. 
Based on the desired degree of anonymisation (k-anonymity level), values are 
suppressed  as soon as they  exceed k or are regrouped and aggregated 
(microaggregation). 

● Location data, i.e. any data containing geographical values, can be clustered to k size and 
thereby anonymised. 

● Invoice data, i.e. datasets containing information on payments and the time of the 
payment. Here, the data can be generalised with hierarchies, bucketisation (values 
grouped together) or time series clustering. 

● Textual data, i.e. any kind of text generated by individuals which includes  personal 
information. Two anonymisation options are offered and can be selected by the Data 
Controller depending on the application. The identification of named entities with 
transformer models and sentiment analysis, where only the polarity of the text is stored. 

                                                           
19

 https://amnesia.openaire.eu/ 



D4.2 Report on the implementation of deep learning algorithms on distributed frameworks 
 

© TRUSTS, 2022  Page | 71  

7 References 

Abadi, M., Chu, A., Goodfellow, I., McMahan, H.B., Mironov, I., Talwar, K. and Zhang, L. (2016). 
Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC conference on 
computer and communications security (pp. 308-318). 
 
Albrecht, M. R., Rechberger, C., Schneider, T., Tiessen, T., & Zohner, M. (2015). Ciphers for MPC 
and FHE. In Annual International Conference on the Theory and Applications of Cryptographic 
Techniques (pp. 430-454). Springer, Berlin, Heidelberg. 
 
Bampoulidis A., Markopoulos I., Lupu M. (2019) PrioPrivacy: A Local Recoding K-Anonymity Tool 
for Prioritised Quasi-Identifiers. IEEE/WIC/ACM International Conference on Web Intelligence - 
Companion Volume October 2019 Pages 314–317 https://doi.org/10.1145/3358695.3360918 
 
Bampoulidis, A. (2020a). D5.10 Report on the application of re-identifcation techniques on use-
case data v2. Safe-DEED. 
 
Bampoulidis, A., Bruni, A., Markopoulos, I., & Lupu, M. (2020b). Practice and Challenges of (De-) 
Anonymisation for Data Sharing. In International Conference on Research Challenges in 
Information Science (pp. 515-521). Springer, Cham. 

Barbaro, M., Zeller, T., & Hansell, S. (2006). A face is exposed for AOL searcher no. 4417749. 
New York Times, 9(2008), 8. 

Boehm, M., Antonov, I., Baunsgaard, S., Dokter, M., Ginthör, R., Innerebner, K., Klezin, F., 
Lindstaedt, S., Phani, A., Rath, B. and Reinwald, B. (2019). SystemDS: A Declarative Machine 
Learning System for the End-to-End Data Science Lifecycle. arXiv preprint arXiv:1909.02976. 

Bogdanov, D., Kamm, L., Laur, S., Pruulmann-Vengerfeldt, P., Talviste, R., & Willemson, J. (2014). 
Privacy-preserving statistical data analysis on federated databases. In Annual Privacy Forum (pp. 
30-55). Springer, Cham. 

Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D., Ingerman, A., Ivanov, V., Kiddon, C., 
Konečný, J., Mazzocchi, S., McMahan, H.B. and Van Overveldt, T. (2019). Towards federated 
learning at scale: System design. SysML. 

Cheon, J. H., Kim, A., Kim, M., & Song, Y. (2017). Homomorphic encryption for arithmetic of 
approximate numbers. In International conference on the theory and application of cryptology 
and information security (pp. 409-437). Springer, Cham. 

De Montjoye, Y. A., Hidalgo, C. A., Verleysen, M., & Blondel, V. D. (2013). Unique in the crowd: 
The privacy bounds of human mobility. Scientific reports, 3(1), 1-5. 

https://doi.org/10.1145/3358695.3360918
https://doi.org/10.1145/3358695.3360918
https://doi.org/10.1145/3358695.3360918
https://doi.org/10.1145/3358695.3360918


D4.2 Report on the implementation of deep learning algorithms on distributed frameworks 
 

© TRUSTS, 2022  Page | 72  

Derler, D., Ramacher, S., & Slamanig, D. (2017). Homomorphic proxy re-authenticators and 
applications to verifiable multi-user data aggregation. In International Conference on Financial 
Cryptography and Data Security (pp. 124-142). Springer, Cham. 

Domingo-Ferrer, J., & Mateo-Sanz, J. M. (2002). Practical data-oriented microaggregation for 
statistical disclosure control. IEEE Transactions on Knowledge and data Engineering, 14(1), 189-
201. 

Dwork, C. (2008). Differential privacy: A survey of results. In International conference on theory 
and applications of models of computation (pp. 1-19). Springer, Berlin, Heidelberg. 

Dua, D. and Graff, C. (2017). UCI machine learning repository. URL: 
https://archive.ics.uci.edu/ml/index.php. [Accessed 2021-05-24]. 
Federated, TensorFlow. "Machine Learning on Decentralized Data." TensorflowFL. (2020) URL: 
https://www. tensorflow. org/federated [accessed 2020-10-13]. 
 
Fung, B. C., Wang, K., & Yu, P. S. (2005). Top-down specialization for information and privacy 
preservation. In 21st international conference on data engineering (ICDE'05) (pp. 205-216). IEEE. 
 
Garg, S., & Srinivasan, A. (2018). Two-round multiparty secure computation from minimal 
assumptions. In Annual International Conference on the Theory and Applications of 
Cryptographic Techniques (pp. 468-499). Springer, Cham. 
 
Gentry C. (2009a) Computing on encrypted data. In International Conference on Cryptology and 
Network Security (pp. 477-477). Springer, Berlin, Heidelberg. 
 
Gentry C. (2009b) Fully homomorphic encryption using ideal lattices. In Proceedings of the 
forty-first annual ACM symposium on Theory of computing (pp. 169-178). 
 
Ghinita, G., Tao, Y., & Kalnis, P. (2008). On the anonymization of sparse high-dimensional data. 
In 2008 IEEE 24th International Conference on Data Engineering (pp. 715-724). IEEE. 

Goldreich, O., Micali, S., & Wigderson, A. (2019). How to play any mental game, or a 
completeness theorem for protocols with honest majority. In Providing Sound Foundations for 
Cryptography: On the Work of Shafi Goldwasser and Silvio Micali (pp. 307-328). 

Grassi, L., Rechberger, C., Rotaru, D., Scholl, P., & Smart, N. P. (2016). MPC-friendly symmetric 
key primitives. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and 
Communications Security (pp. 430-443). 

Greene, W.H. (2003). Econometric analysis. Pearson Education India. 

Hagedoorn, T. R., Kumar, R., & Bonchi, F. (2020). X2R2: a tool for explainable and explorative 
reidentification risk analysis. Proceedings of the VLDB Endowment, 13(12), 2929-2932. 



D4.2 Report on the implementation of deep learning algorithms on distributed frameworks 
 

© TRUSTS, 2022  Page | 73  

 
Hsu, J., Gaboardi, M., Haeberlen, A., Khanna, S., Narayan, A., Pierce, B. C., & Roth, A. (2014). 
Differential privacy: An economic method for choosing epsilon. In 2014 IEEE 27th Computer 
Security Foundations Symposium (pp. 398-410). IEEE. 
 
Iyengar, V. S. (2002). Transforming data to satisfy privacy constraints. In Proceedings of the 
eighth ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 279-
288). 
 
Jarecki, S., & Liu, X. (2010). Fast secure computation of set intersection. In International 
Conference on Security and Cryptography for Networks (pp. 418-435). Springer, Berlin, 
Heidelberg. 
 
Kabir, M.E., Wang, H. & Bertino, E. Efficient systematic clustering method for k-anonymization. 
(2011) Acta Informatica 48, 51–66 .  
 
Kairouz, P., McMahan, H.B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A.N., Bonawitz, K.A., 
Charles, Z., Cormode, G., Cummings, R. and D'Oliveira, R.G. (2019). Advances and Open 
Problems in Federated Learning. 
 
Kales, D., Rechberger, C., Schneider, T., Senker, M., & Weinert, C. (2019). Mobile private contact 
discovery at scale. In 28th USENIX Security Symposium (USENIX Security 19) (pp. 1447-1464). 
 
LeFevre, K., DeWitt, D. J., & Ramakrishnan, R. (2005). Incognito: Efficient full-domain k-
anonymity. In Proceedings of the 2005 ACM SIGMOD international conference on Management 
of data (pp. 49-60). 
 
Li, T., & Li, N. (2009). On the tradeoff between privacy and utility in data publishing. In 
Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and 
data mining (pp. 517-526). 
 
Li, T., Sahu, A.K., Talwalkar, A. and Smith, V. (2020). Federated learning: Challenges, methods, 
and future directions. IEEE Signal Processing Magazine, 37(3), pp.50-60. 
 
Li, W., Ding, S., Chen, Y., Wang, H. and Yang, S. (2019). Transfer learning-based default 
prediction model for consumer credit in China. The Journal of Supercomputing, 75(2), pp.862-
884. 
 
Ma, J., Naas, S. A., Sigg, S., & Lyu, X. (2022). Privacy‐preserving federated learning based on 
multi‐key homomorphic encryption. International Journal of Intelligent Systems. 
 
Machanavajjhala, A., Kifer, D., Gehrke, J., & Venkitasubramaniam, M. (2007). l-diversity: Privacy 
beyond k-anonymity. ACM Transactions on Knowledge Discovery from Data (TKDD), 1(1), 3-es. 



D4.2 Report on the implementation of deep learning algorithms on distributed frameworks 
 

© TRUSTS, 2022  Page | 74  

 
McMahan, B., Moore, E., Ramage, D., Hampson, S. and y Arcas, B.A. (2017). Communication-
efficient learning of deep networks from decentralized data. In Artificial Intelligence and 
Statistics (pp. 1273-1282). PMLR. 
 
Ozbayoglu, A.M., Gudelek, M.U. and Sezer, O.B. (2020). Deep learning for financial applications: 
A survey. Applied Soft Computing, p.106384. 
 
Pan, S.J. and Yang, Q. (2009). A survey on transfer learning. IEEE Transactions on knowledge and 
data engineering, 22(10), pp.1345-1359. 
 
Petitjean, F., Ketterlin, A., & Gançarski, P. (2011). A global averaging method for dynamic time 
warping, with applications to clustering. Pattern recognition, 44(3), 678-693. 
 
Prasser, F., Eicher, J., Spengler, H., Bild, R., & Kuhn, K. A. (2020). Flexible data anonymization 
using ARX—Current status and challenges ahead. Software: Practice and Experience, 50(7), 
1277-1304. 
 
Rechberger, C., & Walch, R. (2022). Privacy-preserving machine learning using cryptography. In 
Security and Artificial Intelligence (pp. 109-129). Springer, Cham. 
 
Song, Y., Dahlmeier, D., & Bressan, S. (2014). Not so unique in the crowd: a simple and effective 
algorithm for anonymizing location data. In PIR@ SIGIR. 

Slijepčević, D., Henzl, M., Klausner, L. D., Dam, T., Kieseberg, P., & Zeppelzauer, M. (2021). k-
Anonymity in practice: How generalisation and suppression affect machine learning classifiers. 
Computers & Security, 111, 102488.  

Sousa, S., Kern, R. (2022). How to keep text private? A systematic review of deep learning 
methods for privacy-preserving natural language processing. Artificial Intelligence Review. 
https://doi.org/10.1007/s10462-022-10204-6.  

Sweeney, L. (2000). Simple demographics often identify people uniquely. Health (San Francisco), 
671(2000), 1-34. 

Sweeney, L. (2002a). k-anonymity: A model for protecting privacy. International Journal of 
Uncertainty, Fuzziness and Knowledge-Based Systems, 10(05), 557-570. 

Sweeney, L. (2002b). Achieving k-anonymity privacy protection using generalization and 
suppression. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 
10(05), 571-588. 

https://doi.org/10.1007/s10462-022-10204-6


D4.2 Report on the implementation of deep learning algorithms on distributed frameworks 
 

© TRUSTS, 2022  Page | 75  

Suryanto, H., Guan, C., Voumard, A. and Beydoun, G. (2019). Transfer Learning in Credit Risk. In 
Joint European Conference on Machine Learning and Knowledge Discovery in Databases (pp. 
483-498). Springer, Cham. 

Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C. and Liu, C. (2018). A survey on deep transfer 
learning. In International conference on artificial neural networks (pp. 270-279). Springer, Cham. 

Xiao, X., & Tao, Y. (2006). Anatomy: Simple and effective privacy preservation. In Proceedings of 
the 32nd international conference on Very large data bases (pp. 139-150). 
 
Yang, Q., Liu, Y., Chen, T. and Tong, Y. (2019). Federated machine learning: Concept and 
applications. ACM Transactions on Intelligent Systems and Technology (TIST), 10(2), pp.1-19. 
 
Yao, A. C. C. (1986). How to generate and exchange secrets. In 27th Annual Symposium on 
Foundations of Computer Science (sfcs 1986) (pp. 162-167). IEEE. 
 
Yeh, I.C. and Lien, C.H. (2009). The comparisons of data mining techniques for the predictive 
accuracy of probability of default of credit card clients. Expert Systems with Applications, 36(2), 
pp.2473-2480. 
 
Yin, H., Mallya, A., Vahdat, A., Alvarez, J. M., Kautz, J., & Molchanov, P. (2021). See through 
gradients: Image batch recovery via gradinversion. In Proceedings of the IEEE/CVF Conference 
on Computer Vision and Pattern Recognition (pp. 16337-16346). 
 
Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H. and He, Q. (2020). A comprehensive 
survey on transfer learning. Proceedings of the IEEE, 109(1), pp.43-76. 


