

1

The Vocabulary Hub to configure data

space connectors
Wouter.vandenBerg@tno.nl

 Michiel.Stornebrink@tno.nl

Arjan.Stoter@tno.nl
Jan_Pieter.Wijbenga@tno.nl

Introduction
Interoperability within a data space requires participants to be able to understand each other. But

how do you get data space participants to use a common language? According to the IDS Reference

Architecture Model (IDS-RAM)1, the main responsibility for this common language lies with an

intermediary role called a vocabulary provider. This party manages and offers vocabularies

(ontologies, reference data models, schemata, etc.) that can be used to annotate and describe

datasets and data services. The vocabularies can be stored in a vocabulary hub: a service that stores

the vocabularies and enables collaborative governance of the vocabularies.

The IDS-RAM specifies little about how vocabularies, vocabulary providers and vocabulary hubs

enable semantic interoperability. The hypothesis that we address in this position paper is that a

vocabulary hub should go a step further than publishing and managing vocabularies, and include

features that improve ease of vocabulary use. We propose a wizard-like approach for data space

connector configuration, where data consumers and data providers are guided through a sequence

of steps to generate the specifications of their data space connectors, based on the shared

vocabularies in the vocabulary hub. We illustrate this with our own implementation of a vocabulary

hub, called Semantic Treehouse.

Background
Semantic interoperability is vital for a data space. According to a recent Open DEI publication2, the

design and implementation of a data space comprises a number of functional building blocks. One of

the categories in the Open DEI taxonomy describing those building blocks is ‘interoperability’

including data exchange APIs, data representation formats and data provenance and traceability.

Furthermore, as the European Interoperability Framework3 shows, interoperability itself unfolds into

different interoperability challenges, one of them being semantic interoperability.

The importance of semantics in data spaces is also clearly reflected by the work done by the

International Data Spaces (IDS) initiative. One of the few normative specifications of IDS is the IDS

Information Model4. As such, it should be considered as a prescriptive part of the IDS Reference

Architecture Model (IDS-RAM). A common language is necessary for the level of semantic

1 IDSA Reference Architecture Model 3.0: https://internationaldataspaces.org/use/reference-architecture/
2 OpenDEI Position Paper: Design Principles for Data Spaces, https://www.opendei.eu/
3 https://joinup.ec.europa.eu/collection/nifo-national-interoperability-framework-observatory/3-
interoperability-layers
4 https://github.com/International-Data-Spaces-Association/InformationModel

2

interoperability that is required to achieve the main design goal of IDS: (semi-) automated exchange

of digital resources.

To semantically annotate the data that is being shared in a data space, we require domain specific

vocabularies. The development of such vocabularies is often organized centrally by business

communities and delegated to some sort of standards development organization (SDO) that

publishes and maintains shared domain vocabularies and data schemata. In the IDS-RAM, this role is

called the vocabulary provider, and the platform where communities publish and maintain shared

vocabularies is called the vocabulary hub.

A short overview of Semantic Treehouse
TNO’s implementation of a vocabulary hub is called Semantic Treehouse. It is an online community

platform for data models and vocabularies and gives vocabulary providers the tools they need to

facilitate semantic interoperability in their data space. Semantic Treehouse is a web application that

can be hosted (e.g. by a vocabulary provider) to serve the needs of specific business communities,

e.g. a logistic sector, or other domains of interest. It provides that community with core vocabulary

hub functionality, including publishing and collaborative maintenance of vocabularies and data

models.

For more than a decade, TNO has developed and maintained standardized semantic data models for

a variety of industries5. Standardization activities include governance, modelling, maintenance,

community management and implementation support. While using many different tools,

communication channels and knowledge sources, the idea arose that these should be unified.

Development of Semantic Treehouse started in 2015, at first as an internal tool to help us carry out

our own activities more effectively. The main design goals were: (1) web-based publication of data

models for easier viewing, (2) improved maintenance and knowledge management with GitHub-

style issue tracking, (3) increased user community participation through transparent presentation of

working group information, and (4) to offer implementation support through the provision of data

validation services in multiple formats (e.g. JSON, XML).

Since 2015, Semantic Treehouse has evolved from a tool used within TNO to software provided as a

service (SaaS) to SDOs in the Netherlands. One of these SDOs is the Smart Connected Supplier

Network (SCSN) that provides an operational IDS data space for the smart industry sector67.

Currently, Semantic Treehouse serves the needs of 750 unique business users per month, with more

than 4000 registered accounts in total. This has validated our belief that Semantic Treehouse

provides a strong foundation to facilitate SDOs tasked with developing and maintaining shared data

models together with end users in their business communities.

TNO regularly releases new versions of Semantic Treehouse, where new features and improvements

are a combination of ideas and requests from clients and strategic research topics. Here, we provide

two examples of the latter. First, providing SaaS is an intermediate step to releasing Semantic

Treehouse as open source, which we expect to achieve in 2023. Second, Semantic Treehouse is

continuously adapted to new innovations and technology trends, one of which is a shift from

5 For more info, see: https://www.tno.nl/en/focus-areas/information-communication-
technology/roadmaps/efficiency-effectiveness-quality-and-the-costs-of-systems/scalable-it-
systems/standardisation-of-semantics/
6 https://internationaldataspaces.org/adopt/data-space-radar/
7 https://smart-connected.nl/

3

hierarchical message models towards ontologies and applying FAIR principles. This shift has shown

that there is still a lot that can be done to boost semantic interoperability in business communities.

As a means to facilitate semantic interoperability, a wizard-like component was integrated in the

vocabulary hub to further drive adoption of shared vocabularies. The wizard takes a user through a

series of steps to design message schemas and API specifications based on a shared domain

ontology. The wizard generates schemata for JSON, XML and CSV data formats, generates example

messages and generates mappings for automatic transformations of data to RDF according to the

ontology. The generated JSON schemas can be used directly in OpenAPI specifications to configure a

data space connector. With this functionality we aim to bridge the gap between semantic web

technologies and the traditional world of IT development, and bring semantic interoperability closer

to data spaces.

The data space connector configuration wizard
Architecture
Data exchange requires establishment of its contents. The design principle ‘separation of concerns’

implies that, given the availability of a single semantic model, i.e., the ontology, the establishment of

the contents can be done on the level of semantics without concern on the syntactical forms. The

semantic model allows to cherry pick from the graph tree those elements that constitute the

information that is to be exchanged. This results in a set of one or more sub-graphs (with selected

sub-elements only) from the ontology, together denoted as the ‘abstract message’.

The wizard component allows users to ‘cherry pick’ the relevant classes and properties from the

ontology in the following way. In the first step, the user selects the information that is to be

exchanged, which the wizard collects into an abstract message tree (AMT); In the second step, the

wizard generates a technology-specific syntax binding between the AMT and a syntax format of the

user’s choice, e.g. XML or JSON; Finally, in the third step, the wizard generates the specifications for

a conversion between message- and/or query-oriented data exchange using RML8. The use of the

resulting RML is optional (Figure 1).

FIGURE 1 - (A) SYNTAX BINDINGS IN A SINGLE STACK, (B) SYNTAX BINDINGS AND RML MAPPINGS IN A DUAL STACK

In the first scenario (Figure 1a), the output of the wizard is the generated schema sourced from the

ontology. In the second scenario (Figure 1b), the wizard-generated RML mapping is also used.

8 https://rml.io/

4

We introduced an RML Engine in order to transcribe between message and graph-based data in

accordance to the generated mapping specification (RML). Because applications are independently

developed without agreements on their data structures in advance, we apply graphs as structure-

agnostic data representation to allow mediation between distinct message structures. Similarly, the

semantic API can be configured to transcribe from graph data to the native data schemata of

communicating peers. As such it mirrors the operation of the RML Engine.

Separating the two components anticipates on future transition phases that allow for the inclusion

of SPARQL endpoints.

Procedure
The procedural design of the wizard assumes one or more ontologies as input and ends with the

schema and RML specifications as output.

Step 0 - Exploration of the ontology: Assume a domain ontology. Exploring and familiarizing oneself

with the ontology is required before starting the Wizard. The available WebVOWL9 and LODE10
tools are two examples of how the domain user can get acquainted with the semantics that

apply.
Step 1 - Message composition: This is performed in two sub-steps:

Step 1.1 - Message Model Set-up: The wizard is offered in a collaborative environment (the

vocabulary hub) with a shared workspace for standardized specifications, and a private
workspace where each community stakeholder manages its own specifications. The
versioned specifications come in two types: ontologies and abstract message models. Every

registered user or organization can create their own project that groups private and shared
specifications and a sandbox for tryouts. Shared projects exist that contain the agreed-upon

specifications. Typically, the domain ontology lives in a shared project and is used by all
domain stakeholders throughout the message specification process.
The wizard creates or chooses a project that in its basic form consists of a title, description,

versions of a message model, with status information (concept, final) and other metadata
(dates, documentation, acknowledgements). Namespaces consolidate the universal
uniqueness of the generated output schemata. Each message model imports at least one

versioned ontology, presented as graph trees for the subsequent message composition.
Step 1.2 - Select root class: After the above initial set-up, the user selects the ontology class that

acts as root to the message model. The default values for name, URI, type and comments are
loaded from the ontology and populates the root element. The user can then alter these
values, e.g., element names.

Step 2 - Customize root class and iteratively select and customize properties: The incoming and
outgoing properties of the root class are loaded from the ontology and are all presented as

potential elements that can be added as child elements of the message root element. Allowed
customizations include renaming and adding further restrictions to the default ontological
specifications into a customized message specification. For example, changing the cardinality of

some property from [0..n] to [1..n] counts as a further restriction. To prevent cardinality violation
of the ontology, the wizard disallows loosening constraints, e.g., changing the cardinality from
[0..1] to [0..n]. The wizard also allows structural changes, e.g., adding a property more than once

or inserting a grouping element. Cardinalities are always checked against violating the
ontological constraints.

This step can be repeated for each element that sources from the root element, further
unfolding the graph until all desired information is included in the message model. Note that

9 http://vowl.visualdataweb.org/webvowl.html
10 https://essepuntato.it/lode/

5

‘walking back’ over properties, i.e. going from range to domain, is only supported for object
properties. This requires to include a wizard-specific annotation.

The result of this step is the abstract message schema that holds all necessary information in an
agreed structure (element names, cardinalities, URIs, property mappings, sequences).

Step 3 - Generate and validate the specifications: Based on the abstract message schema, the

specifications that act as configurations for the RML Engine can be generated by a press of the

button. This consolidates a message model version for all specifications: XML or JSON Schema,

the RML mapping, and example data as follows:

Step 3.1 - XSD Generation: With the target and message namespaces, the global complex types

and simple types are determined according to the Venetian Blind strategy11. Next the root

element, global complex and simple types are added, followed by the namespace prefixes.

Step 3.2 - JSON Schema Generation: The JSON Schema is generated in accordance with the json

schema draft 07 version. The mapping of simple types was inspired by the OxygenXML

mapping12.

Step 3.3 - RML Generation: What RML to generate depends on the choice for JSON or XSD. An

RML logical source is created for the target, and a subject map is created for the root

element. For leaf nodes, a simple RML predicate object mapping is created. For nodes that

have sub-elements, a nested triples map is created that is bound to the parent through a

logical join condition. This is done recursively until all nodes have been processed.

Based on test data, the data messages and their conversions can be syntactically verified against the

specifications that apply.

Conclusion
In this position paper we stipulated the importance of semantic interoperability according to

common reference and interoperability frameworks. We explained how SDOs enable standardized

data exchange in business communities by means of vocabularies and elaborated on the need for

tooling to support SDOs and end users to design, publish, share and maintain those vocabularies.

Furthermore we specified how a wizard-like component can be used to design ontology based data

exchange schemata and, if needed, data transformation specification that can be directly used to

configure a data space connector. Thereby bringing semantic interoperability to data spaces, which

enables non-technical domain experts, i.e. people without training or experience in knowledge

representation, to collaboratively design the required APIs in a matter of days.

Acknowledgements
The work as presented in this paper builds upon the work done within two projects. One is the Dutch

research project Flexible IT with Ontologies, supported by the Dutch Top consortia for Knowledge

and Innovation Institute for High Tech Systems and Materials13 of the Ministry of Economic Affairs

and Climate Policy. The other is the BD4NRG project, which is co-funded14 by the Horizon 2020

Programme of the European Union (grant agreement No 872613).

11 http://www.xfront.com/GlobalVersusLocal.pdf
12 https://www.oxygenxml.com/doc/versions/22.0/ug-editor/topics/xsd-to-json-schema-converter.html
13 https://hollandhightech.nl/
14 This document reflects only authors’ views. The European Commission is not liable for any use that may be
done of the information contained therein.

	Introduction
	Background
	A short overview of Semantic Treehouse
	The data space connector configuration wizard
	Architecture
	Procedure

	Conclusion
	Acknowledgements

