
D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021

 Page | 1

Authors: Benjamin Heitmann, Ahmad Hemid, Kim Fidomski

December 2021

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under the Grant Agreement No 871481.

D2.7 Architecture design and technical
specifications document II

Authors: Kim Fidomski, Ahmad Hemid, Benjamin Heitmann (FhG)

December 2021

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 2

TRUSTS Trusted Secure Data Sharing Space

D2.7 Architecture design and technical
specifications document II

Document Summary Information

Grant Agreement No 871481 Acronym TRUSTS

Full Title TRUSTS Trusted Secure Data Sharing Space

Start Date 01/01/2020 Duration 36 months

Project URL https://trusts-data.eu/

Deliverable D2.7 Architecture design and technical specifications document II

Work Package WP2 - Requirements Elicitation & Specification

Contractual due date 31/12/2021 Actual submission date 17/12/2021

Nature Report Dissemination Level Public

Lead Beneficiary Fraunhofer (FhG)

Responsible Author Benjamin Heitmann

Contributions from FhG, SWC, EMC, G1, NOVA, EBOS, LST, REL, FORTH, KNOW, RSA

https://trusts-data.eu/

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 3

Revision history (including peer reviewing & quality control)

Version Issue Date
%

Complete
Changes Contributor(s)

v0.1 12/10/2021 5 Initial Deliverable Structure Benjamin Heitmann (FhG), Kim
Fidomski (FhG), Ahmad Hemid
(FhG)

v0.2 11/11/2021 15 Revision of the architecture
requirements from WP3 tasks

Benjamin Heitmann (FhG),
Steffen Biehs (FhG),
Stefan Gindl (RSA), Victor
Mireles Chavez (SWC),
Nikos Fourlataras (REL),
Dominik Kowald (KNOW),
Ohad Arnon (EMC), Abdel Aziz
Taha (RSA)

v0.3 18/11/2021 35 Revision of the components of the
architecture

Benjamin Heitmann (FhG),
Steffen Biehs (FhG),
Stefan Gindl (RSA), Victor
Mireles Chavez (SWC),
Nikos Fourlataras (REL),
Dominik Kowald (KNOW)

v0.4 24/11/2021 50 Update of the design
considerations

Victor Mireles Chavez (SWC),
Nikos Fourlataras (REL),
Steffen Biehs (FhG)

v0.5 25/11/2021 75 Revision of the technical
architecture of the TRUSTS
platform

Victor Mireles Chavez (SWC),
George Margetis (FORTH),
Stefan Gindl (RSA)

v0.6 02/12/2021 95 Addition of introductory and
concluding chapters

Kim Fidomski (FhG)

v1.0 06/12/2021 100 Deliverable ready for peer review Kim Fidomski (FhG)

v1.1 10/12/2021 100 Peer review Victor Mireles Chavez (SWC)

v1.2 13/12/2021 100 Revision according to peer review Benjamin Heitmann (FhG), Kim
Fidomski (FhG)

V1.3 16/12/2021 100 Peer review Nikos Fourlataras (REL)

V1.4 16/12/2021 100 Revision according to peer review Benjamin Heitmann (FhG), Kim
Fidomski (FhG)

v1.5 17/12/2021 100 Final version Benjamin Heitmann (FhG), Kim
Fidomski (FhG)

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 4

Disclaimer

The content of the publication herein is the sole responsibility of the publishers and it does not necessarily
represent the views expressed by the European Commission or its services.

While the information contained in the documents is believed to be accurate, the authors(s) or any other
participant in the TRUSTS consortium make no warranty of any kind with regard to this material including,
but not limited to the implied warranties of merchantability and fitness for a particular purpose.

Neither the TRUSTS Consortium nor any of its members, their officers, employees or agents shall be
responsible or liable in negligence or otherwise however in respect of any inaccuracy or omission herein.

Without derogating from the generality of the foregoing neither the TRUSTS Consortium nor any of its
members, their officers, employees or agents shall be liable for any direct or indirect or consequential loss
or damage caused by or arising from any information advice or inaccuracy or omission herein.

Copyright message

© TRUSTS, 2020-2022. This deliverable contains original unpublished work except where clearly indicated
otherwise. Acknowledgement of previously published material and of the

work of others has been made through appropriate citation, quotation or both. Reproduction is authorised
provided the source is acknowledged.

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 5

Table of Contents

Executive Summary 10

1. Introduction 11

1.1 Mapping Projects’ Outputs 12

1.2 Deliverable Overview and Report Structure 13

1.3 Updates since the previous version of this deliverable 13

2. Technical requirements for the architecture 15

2.1 Architectural Requirements 15

 2.1.1 Architecture requirements from alignment with Data Market Austria components 16

2.1.2 Architecture requirements from alignment with International Data Spaces
components 17

2.1.3 Architecture requirements from future alignment with Gaia-X 19

2.1.4 Architecture requirements related to smart contracts 20

2.1.5 Architecture requirements related to the interoperability of data marketplaces 21

2.1.6 Architecture requirements related to data governance 22

2.1.7 Architecture requirements related to platform development and integration 23

2.1.8 Architecture requirements related to brokerage and profiles for users and corporates 25

2.1.9 Architecture requirements related to privacy enhancing technologies 27

2.1.10 Architecture requirements related to anonymization and de-anonymization 30

2.1.11 Architecture requirements following from the usage of the Comprehensive
 Knowledge Archive Network software 33

2.2 Summary of architecture requirements 34

3. Technical architecture of the TRUSTS platform 38

3.1 Overview of the technical architecture 38

3.1.1 Types of nodes 40

3.1.2 Data sets / services / applications 41

3.1.3 Connections within the TRUSTS architecture 41

3.1.4 Interoperability with external data markets and EOSC Initiatives 44

3.2 Components of the architecture 45

3.2.1 Updates made to the component list since the previous version of this deliverable 54

3.2.2 Summary of connections between functional requirements and components 54

3.2.3 Summary of connections between architecture requirements and components 56

4. Design considerations for the architecture of the TRUSTS platform 58

4.1 Functional requirements which are addressed by the architecture as a whole 58

4.1.1 Functional requirements coming from the preparation for the use case trials 58

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 6

4.2 The role of the components in enabling trust between participants 60

5. Conclusion 61

6. References 63

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 7

List of Figures

Figure 1: Gaia-X high-level architecture [3] 19

Figure 2: System architecture of TRUSTS recommender system 27

Figure 3: Illustration for AR 4.1: Computation using distributed and controlled execution
environments

28

Figure 4: Illustration for AR 4.2: Machine Learning using distributed and privacy preserving
technologies

28

Figure 5: Illustration for AR 4.3: Option of execution of distributed and privacy preserving

technologies on servers provided by the TRUSTS operator

29

Figure 6: Illustration for AR4.4: Option of execution of distributed and privacy preserving

technologies on servers provided by a TRUSTS participant themselves

30

Figure 7: Architecture requirements related to anonymization and de-anonymization 32

Figure 8: Diagram of the technical architecture 39

Figure 9: Overview of networks involved in the TRUSTS platform 40

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 8

List of Tables

Table 1: Adherence to TRUSTS GA deliverable & tasks descriptions 12

Table 2: Summary of architecture requirements 34

Table 3: Summary of connections between functional requirements and components 54

Table 4: Summary of connections between architecture requirements and components

57

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 9

Glossary of terms and abbreviations used

Abbreviation / Term Description

ACME Automated Certificate Management Environment

API(s) Application Programming Interface

AR Architectural Requirement

ARS Architectural Requirement Summary

CKAN Comprehensive Knowledge Archive Network

DAPS Dynamic Attribute Provisioning System

DSC Dataspace Connector

DM Data Marketplace

DMA Data Market Austria, see [1]

FR Functional Requirement

GA Grant Agreement

HTTP Hypertext Transfer Protocol

ID Identifier

IDS International Data Spaces, see [2]

MVP Minimum Viable Product, see [4,5]

PII Personally Identifiable Information

UC Use Case

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 10

Executive Summary

This is the second and final deliverable reflecting the status of the architecture design and the collection of
technical specifications. The technical architecture of the TRUSTS platform is based on three pillars: (1) the vision
for the architecture as a consensus of the technical experts in the project; (2) the functional requirements collected
from experts inside and outside of the project as well as from surveys conducted; and (3) the architecture
requirements collected from the project participants which are working on tasks related to the implementation
of the platform.

Since the first version of this document, an iterative process has been conducted that has resulted in a revised
technical architecture and in revised technical specifications. The experience and best practices of two previous
initiatives, Data Market Austria (DMA) [1] and International Data Spaces (IDS) [2], for supporting data markets,
served as a starting point for developing an architecture for the TRUSTS platform that can be refined iteratively.
Accordingly, both initiatives have strongly influenced the architecture design of the TRUSTS platform. The resulting
technical architecture follows the design principles of these initiatives and of Gaia-X [3]. As already described in
D2.6, on a conceptual level, the roles of participants and the structuring of the federated architecture into several
nodes are based on a hybrid of the related concepts from both DMA and IDS. On a technical level, the architecture
design prescribes the reuse of infrastructure from both DMA and IDS for the implementation of the platform
towards a true hybridized implementation. Taken together, the hybrid architecture will result in a platform
implementation which aims to combine the best of both previous initiatives while mitigating strategically
important weaknesses.

This deliverable is based on the previous version of this deliverable (D2.6). In particular, D2.7 is a refinement of
D2.6. It includes the steps described below to specify the refined architecture design and technical specifications:
First, the architectural requirements collected from the project participants which are working on tasks related to
the implementation of the platform are revised by them according to their gained knowledge since deliverable
D2.6. This is followed by a summary of the revised architectural requirements as well as the revised functional
requirements (FRs). The functional requirements addressed are described in D2.3. Software components for the
architecture are specified in order to address the collected functional and architectural requirements. These
components form the technical architecture of the TRUSTS platform. Due to the iterative process, the technical
architecture and the software components have slightly changed compared to the technical architecture and
components introduced in D2.6. The updates made to the architecture are pointed out. In addition, the design
considerations of the architecture, revised from D2.6, are described. The design considerations document the
aspects of the architecture which are represented in the interplay of multiple components, instead of being
implemented in a single component.

Of strategic importance are several high-level characteristics derived from Gaia-X, i.e., scalability, extensibility,
and federation. By considering high-level characteristics derived from Gaia-X, we expect the architecture of the
TRUSTS platform to be future-proof, as we expect Gaia-X to provide important impulses for the data economy in
Europe.

Taken together, the strong foundation of the architecture of the TRUSTS platform achieved by reusing concepts
and components developed in the DMA and IDS initiatives, and the strategic significance of the high-level
characteristics to be realized in the TRUSTS platform, will enable the TRUSTS platform implementation to support
new forms of innovation and the development of new business models.

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 11

1. Introduction

The architecture design of the TRUSTS platform represents the blueprint for the technical results of the
TRUSTS project. As such, it also represents the foundation for instances of the TRUSTS platform which will be
provided by one or more TRUSTS operators after the duration of the project. The technical specifications
provide the details which are required by technical experts in order to instantiate the platform infrastructure
and build on top of it or to extend it with their own components, services and applications.

This deliverable is the second and final document about the architecture design and technical specifications
within the lifetime of the project. D2.6 ‘Architecture design and technical specifications document I’
submitted in December 2020 (M12) and D2.7 ‘Architecture design and technical specifications document II’
due for month 24, December 2021.

D2.7 is related to task 2.4. The work in this deliverable is the result of a collaborative and iterative process
between all technical experts in the project. The architecture represents the conceptual foundation for the
implementation of the TRUSTS platform, and therefore reaching a consensus on the architecture enables all
project’s technical partners to agree on the most important abstract decisions, before realizing them in their
implementation. The architecture also allows the non-technical project partners to contribute cross-cutting
requirements of strategic importance as well as future-proof architectural characteristics.

The efforts accomplished to design a technical architecture that addresses the requirements from different
groups of stakeholders are summarized in this deliverable. It outlines the insights gained during the iterative
process and summarizes the conclusions drawn in a technical architecture. As already discussed in D2.6, of
particular importance are the documented decisions for challenges of strategic importance, which have an
impact on the project beyond the purely technical aspects of the platform:

• The technical architecture specified in the TRUSTS project is to be designed as an extension of both the
Data Market Austria [1] and Industrial Data Spaces [2] initiatives, which represented the state-of-the-art
in supporting the development of data markets at the beginning of the project. What conceptual and
technical approaches should be reused in TRUSTS to best combine the existing experience and best
practices of both initiatives within the context of the project description?

• The technical architecture is to be future proof with regard to the emerging data economy in Europe. We
expect Gaia-X [3] to give an important impulse for the data economy in Europe by e.g., communicating
with important groups of stakeholders to set the agenda and by setting standards for technical and
organizational issues such as certification. How can compatibility between the architecture being
developed in TRUSTS, and the Gaia-X initiative be ensured? Which high-level characteristics derived from
Gaia-X should be addressed by the platform?

• Why should anyone trade their data sets, applications, and services via the platform developed here?
The platform must provide good reasons to attract users. Trust between the participants of the platform
and in the platform itself is crucial. How can the technical infrastructure help to enable trust between
the participants of a data marketplace, in the platform itself, and in a secure and private exchange of
information? Given the fact that TRUSTS will employ novel approaches to enable this, how can this be
anchored in the design of the architecture?

• How can the design of the architecture enable new forms of assets to be traded and monetized in a
data marketplace? Is there a way to go beyond trading of data sets, and enable for instance the
monetization of access to services and apps as part of a data marketplace?

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 12

1.1. Mapping Projects’ Outputs
The purpose of this section is to map TRUSTS Grant Agreement commitments, both within the formal
deliverable and task description, against the project’s respective outputs and work performed.

Table 1: Adherence to TRUSTS GA deliverable & tasks descriptions

TRUSTS Task
Respective
Document
Chapter(s)

Justification

T2.4
Architecture
design and
technical
specifications

Based on the market analysis and
requirements elicitation outcomes
that are performed in T2.1 and 2.2,
as well as the legal and ethical
frameworks and requirements
generated in T6.2, this task deals
with the specification of an
architectural design of the TRUSTS
platform. While existing
specifications such as the Reference
Architecture Model (RAM) of the
Industrial Data Space (published by
the IDSA, co-edited with FhG) and
design documents of the Data
Market Austria, will serve as a
basis, the additional contributions
of this Tasks are to (i) align the
collected requirements with these
specifications, (ii) identify areas
that need to be improved and
adapted, and (iii) develop and
suggest concrete requests for
changes and adaptations of the
RAM. The Task involves IDSA as
well as key contributors to the DMA
platform as the main stakeholders
of the specifications, leveraging
their established processes (e.g.,
working groups, technical advisory
board meetings) to make sure that
the proposed changes are
incorporated efficiently with wide
support from the industry. The task
not only focuses on the
architectural level but also on
making decisions about
technologies and methods to
actually implement the
architecture. This encompasses the
design of data structures, message
formats, APIs and protocols, but
also the definition of procedures,

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Refinement of the architectural
requirements based on gained
knowledge. Requirements for the
architecture are derived from: (1)
IDS RAM and DMA as the
foundation of the TRUSTS
platform; (2) all technical experts
in the project, who are working on
tasks related to implementing the
platform; (3) future proof
compatibility with Gaia-X.

The technical architecture and its
components are described in
comparison to D2.6. This includes
the specification of technical
details for the interplay of the
components.

Any additional design
considerations and decisions for
the technical architecture are
described.

The results of this deliverable are
summarized, and the benefits of
the technical architecture are
highlighted.

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 13

such as the deployment of new
component instances and their
integration into the running
TRUSTS platform.

TRUSTS Deliverable

D2.7: Architecture design and technical specifications document II (FhG) [M24] R, PU

Second version of the periodically updated report on the TRUSTS platform specification that is based on the
results communicated in D2.1 and D2.2 and D2.3. The document describes the architectural decisions taken
and their rationale. Furthermore, D2.7 will in addition report on the application of the testing and
benchmarking framework provided by T2.3.

1.2. Deliverable Overview and Report Structure
This deliverable summarizes the activities in task 2.4. “Architecture design and technical specifications”. It
serves as a blueprint for the technical results of the TRUSTS project and is primarily a refinement of
deliverable D2.6.

The deliverable is structured into the following sections:

• Technical requirements for the architecture: This chapter collects the requirements for the architecture.
A distinction is made between two types of requirements, collected by different groups of stakeholders.
The first set of requirements are the functional requirements (FRs). This chapter refers to the updated
set of functional requirements that is described in detail in deliverable D2.3 “Industry specific
requirements analysis, definition of the vertical E2E data marketplace functionality and use cases
definition II”. The initial set of the functional requirements were collected mainly from the non-technical
participants of the project. In an iterative process, the functional requirements were updated. New
functional requirements were, i.e., collected from surveys. The second set of requirements that are
introduced in more detail in this chapter are the architectural requirements (ARs). They were updated
since the first version of this deliverable from the project’s technical participants and are grouped by the
different areas of concern for the TRUSTS architecture.

• Technical architecture of the TRUSTS platform: Based on the architectural requirements, a software
architecture for the TRUSTS platform is described and compared to the architecture described in D2.6.
An overview of the architecture is given. Furthermore, the software components that are needed in order
to address the collected functional and architectural requirements are specified. Provided tables list
which components address which identified functional and architectural requirements for the
architecture.

• Design considerations for the architecture of the TRUSTS platform: The design considerations of the
architecture are described to document the aspects of the architecture which are represented in the
interplay of multiple components, instead of being implemented in a single component.

• Conclusion: The deliverable is concluded by listing the project results which are described in this
deliverable. The benefits of the architecture are summarized.

1.3. Updates since the previous version of this deliverable
The previous version of this deliverable, D2.6, presented the basis of the architecture and technical
specifications described in this deliverable. A technical architecture that gives the technical partners of the
project an abstract, conceptual idea and provide details of how the TRUSTS platform should be implemented.

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 14

The development of the architecture was an iterative process. In parallel, the project’s technical participants
have started implementing the platform. The current status of the platform implementation is described in
deliverable D3.10. The findings, which were gained through the implementation, have also been
incorporated into the revised architecture presented here.

The purpose of this section is to summarize the updates that have been made to the architecture
requirements described in the previous version of this deliverable, and thus providing a link between the two
deliverables, both of which are related to task 2.4.

The architectural requirements (ARs) described in Section 2.1 have been slightly adjusted in D2.7. While the
architectural requirements related to the well-known initiatives TRUSTS used as starting point have remained
unchanged, architecture requirements identified by technical partners according to their tasks in the project
have partially changed:

• Modified architectural requirements: AR 3.4.3, AR 3.4.5, AR 3.4.6, AR 3.4.8, AR 3.4.9, AR 3.6.1,
AR 4.3.1

• Added architectural requirements: AR 3.4.13, AR 4.3.5

According to the feedback from the project’s technical partners, the technical architecture was adapted. The
technical architecture diagram (see Figure 8) has been updated, especially regarding the modified
component list described in Section 3.2:

• Removed / Replaced components: Trusted Connector, Asset Consumer, Usage Control, Service
Consumer Adapter, Identity Provider + Key Distribution System

• Renamed components: Dynamic Attribute Provisioning System (DAPS)

As other components cover the functionalities previously covered by the removed or replaced components,
the tables indicating which components address which identified functional and architectural requirements
for the architecture have been adjusted.

Interoperability of the platform is given more attention in the technical architecture diagram. Furthermore,
the connections shown in the diagram have been updated and are explained in more detail in Section 3.1.3.

In Chapter 4, the design considerations are described according to the modified technical architecture.

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 15

2. Technical requirements for the architecture

The architecture of the TRUSTS platform must meet the requirements and priorities of many different
stakeholders. In order to accomplish this, requirements have been collected from different groups of
stakeholders. A distinction is made between two sets of requirements:

The first set of requirements are the functional requirements (FRs). They were initially collected mainly from
the non-technical participants of the project. The functional requirements, after being modified according to
the feedback and experiences of all project participants and adjusted based on surveys conducted, are
described in D2.3 “Industry specific requirements analysis, definition of the vertical E2E data marketplace
functionality and use cases definition II”. The method used to identify and modify the functional
requirements is also described in D2.3. This chapter will only reference the functional requirements described
in D2.3, no details about the FRs are given.

The second set of requirements are the architectural requirements (ARs). While functional requirements
describe what the system should be able to do, architectural requirements describe which requirements the
architecture must fulfill. As already described in D2.6, the architectural requirements were collected from
the technical participants of the project and are grouped by the different areas of concern for the TRUSTS
architecture. These areas of concern remained unchanged and are as follows:

• Architecture requirements from alignment with Data Market Austria components

• Architecture requirements from alignment with International Data Spaces components

• Architecture requirements from future alignment with Gaia-X

• Architecture requirements related to smart contracts
• Architecture requirements related to interoperability of data marketplaces
• Architecture requirements related to data governance

• Architecture requirements related to platform development and integration

• Architecture requirements related to brokerage and profiles for users and corporates
• Architecture requirements related to privacy enhancing technologies
• Architecture requirements related to anonymization and de-anonymization

• Architecture requirements following from the usage of Comprehensive Knowledge Archive
Network software

Based on gained knowledge since the first version of this deliverable, the architectural requirements were
revised by the project’s technical participants. In this section, the updated architectural requirements for the
different areas of concern for the TRUSTS platform are listed first. This is followed by a summary of the
architectural requirements.

2.1. Architectural Requirements
In addition to the functional requirements (FRs), the TRUSTS technical architecture is based on architectural
requirements (ARs). The architectural requirements were initially collected and later revised by the project’s
technical participants based on their experiences in the first half of the TRUSTS project. The ARs are grouped
by the different areas of concern with regards to the architecture.

The first three sections remained unchanged and were taken from D2.6 to provide all the necessary
information without switching between results. The ARs have been revised and confirmed by the respective
technical experts working in the respective field.

For each area of concern, the requirements stemming from that area of concern are listed. For each
requirement an ID, a summarizing title, and a description are provided.

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 16

2.1.1. Architecture requirements from alignment with Data Market Austria components

One of the two approaches for supporting data markets on which the TRUSTS platform builds, is the Data
Market Austria (DMA) data market [1]. The DMA, which started from a flagship project founded by the
Austrian Federal Ministry of Transportation, Innovation and Technology, was envisioned as a single point of
entry to a federated network of data and data-service providers. It aimed at providing a user-friendly portal
through which individuals interested in consuming datasets and data-services can see a list of available
datasets, and then contact the respective provider to gain access to the infrastructure that hosts them. The
DMA project finished in August 2019.

The DMA was envisioned as a distributed set of nodes hosting the different assets, and a central node hosting
the metadata about the assets and other support services. Each node consists of a set of containers serving
a series of core components, which include access control, metadata harvesting, asset ingestion UI and an
Etherium blockchain node. The central node additionally executes several metadata management pipelines,
along with a user authentication and access control service. Together, these services and an orchestrated
exchange of information (e.g., ip-addresses and public keys for verifying authentication tokens) realize the
federation of the DMA.

The DMA model of a distributed set of independent nodes and an additional central node has been inherited
in the TRUSTS platform architecture presented in this document. It will be further enriched by the security-
enhancing technologies that have been developed by the IDSA, as well as a series of components deployed
ad hoc for the TRUSTS platform. Three important architectural commonalities exist between the two
projects. First, the notion of independent nodes that host the assets offered by the organization. Second, the
notion of a centralized metadata catalogue that, along with a set of controlled vocabularies, constitutes a
knowledge graph on which applications such as search, and recommendation are powered. Third, the idea
of a set of components being developed and distributed to different organizations so that each organization
can set up their own participating node by running instances of the provided components.

Likewise, several outstanding differences can be identified between the two, which are introduced by the
usage of software components from the International Data Spaces (IDS) [2]. The IDS will be described in the
next section. On the one hand, the communication protocol between the different nodes is replaced in
TRUSTS by the IDSCPv2 protocol, which incorporates an additional layer of security and trust by the use of
cryptographic certificates and third-party attestation. On the other, TRUSTS introduces the notion of a
portable application, which in turn necessitates a more adaptable routing mechanism within each node. In
the DMA, routing is configured in a reverse proxy configuration which only requires alterations when a new
core component is installed. This contrasts with the TRUSTS routing mechanism which allows dynamically for
services to appear, disappear or change names within a node. Finally, the TRUSTS platform envisions a
federated user information system, distributed across all the nodes.

Since some of the DMA components are repurposed in the TRUST platform, along with many of the design
principles and user scenarios, the following architecture requirements are inherited by the TRUSTS
architecture from the DMA project:

Requirements for reuse of DMA components and concepts

AR 3.D.1

Ability to operate as a distributed set of nodes.

The different providers and consumers of assets must remain capable of operating their
own infrastructure in order to maintain data sovereignty. This infrastructure should be
connected in a well-defined and easy to set-up manner in order to realize the business
models.

AR 3.D.2 Asset metadata distribution and aggregation.

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 17

Organizations should be able to offer existing assets on the platform. This requires
mechanisms to ingest, map and distribute metadata about assets in a way that is searchable
and actionable by the other participants of the platform.

AR 3.DMA.3

Components must be easily deployable and connected.

The different nodes involved in the platform will each deploy a set of services. These can be
developed or packaged by the platform operator, and they should be easily installable by
every participating organization.

AR 3.DMA.4

Node infrastructure metadata accessible to all components in a node.

All components running in a node must have access to a single and up-to-date source of
basic metadata about the node, such as name, identification numbers, as well as metadata
about other components it interacts with.

AR 3.DMA.5

Single source of truth for controlled vocabularies.

In order to adequately manage metadata coming from different organizations, some of
which might have been created with distinct purposes in hand, it is necessary to have a set
of controlled vocabularies that are centrally maintained and which can be used in mapping
of metadata schemas and items.

2.1.2. Architecture requirements from alignment with International Data Spaces components

The second approach for supporting data markets on which the TRUSTS platform builds, is the International
Data Spaces (IDS) [2], which provides a set of infrastructure components on which data markets can be built.
The IDS is a decentral software architecture for exchanging data in a sovereign, secure and interoperable
way. Data owners’ sovereignty over their data is achieved by certifying the actors that participate in a data
space as well as the technical components they operate to exchange data, and by technically controlling the
usage of data on the data consumer’s side according to metadata by which the data owner described data
usage policies.

The IDS Reference Architecture Model is defined by the IDS Association (IDSA) and its 100+ member
organizations. In a minimal IDS, participants exchange data peer-to-peer. They do so by operating a
standardized communication interface called Connector. A meaningful data space that allows for multiple
participants that neither know nor trust each other initially and that is open for additional participants to join
requires further infrastructure called essential services. For convenience, further non-essential services make
sense in a data space. The following table lists them all:

Service What is it? Essential?

Certification body Governance body empowered to grant IDSA certification for
components and participants

Yes

Certification
authority

Authority that is in charge of the certification to make sure that only
compliant organizations are granted access to the trusted business
ecosystem

Yes

Dynamic
provisioning
service

Management of certifications and metadata for all components and
participants

Yes

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 18

Participant
information
system

Registry of certified participants that is accessible to all participants Yes

Dynamic trust
management

Governance body empowered to enforce basic security rules of IDS as a
whole

Yes

IDS (metadata)
brokers

IDS connectors will register descriptions of data endpoints with IDS
brokers. This allows data consumers to find the data they need.

Yes

App store Outlets provide data apps that can be deployed in IDS Connectors to
execute tasks like transformation, aggregation or analytics on the data.
Provided by IDS members, certified under IDS standards.

No

Vocabulary
provider

Offer “vocabularies” such as ontologies, reference data models and
metadata elements, which can be used to annotate and describe
datasets.

No

Clearing houses These intermediaries will provide clearing and settlement services for
financial and data exchange transactions in the IDS.

No

We imagine the TRUSTS data space to be an IDS-compatible data space. At the end of the project,
organizations should have been identified that take care of certification and trust management. Based on
this, the following architecture requirements are inherited by the TRUSTS architecture from the IDS:

Requirements from future alignment with IDS

AR 3.I.1

Essential services (technical):

Services for dynamic provisioning, participant information and (metadata) brokerage shall
be put into operation.

AR 3.I.2

IDS Connectors:

All participants required for demonstrating the TRUSTS use cases shall be equipped with IDS
Connectors and should be able to expose their data offerings through these connectors’
interfaces, including self-describing metadata in terms of the IDS Information Model.

AR 3.I.3

Essential services (operational):

Organizations that provide the essential services of certification (i.e., certification body and
certification authority) shall be identified. A body in charge of dynamic trust management
shall be established.

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 19

2.1.3. Architecture requirements from future alignment with Gaia-X

Gaia-X [3] is a project for the development of an efficient and competitive, secure and trustworthy federation
of data infrastructure and service providers for Europe, which is supported by representatives of business,
science and administration from European countries.

Gaia-X follows the principles of openness and transparency of standards, interoperability, federation, i.e.,
decentral distribution, as well as authenticity and trust (Technical Architecture [3, §1.2]).

These principles are translated into the following technical guidelines (Technical Architecture [3, §1.3]):

• Security-by-design
• Privacy-by-design
• Enabling federation, distribution, and decentralization
• Usage-friendliness and simplicity
• Machine-processability
• Semantic representation

The Gaia-X ecosystem as a whole is structured into a Data Ecosystem and the Infrastructure Ecosystem
(Technical Architecture [3, §1.4]). The Data Ecosystem enables Data Spaces as envisioned by the European
Data Strategy, where not only data is exchanged, but also advanced smart services are provided. The
Infrastructure Ecosystem comprises building blocks from hardware nodes to application containers, where
data is stored and services are executed, as well as networks, via which data is transmitted. Infrastructure
itself may be provided as a service.

Figure 1: Gaia-X high-level architecture [3]

The Federation Services connect the Data and Infrastructure Ecosystems with concrete functionality that is
in line with the architecture principles and technical guidelines. The Federation Services are grouped into the
following domains, which are by no means specific to Gaia-X, but generally apply to data and service
ecosystems based on cloud technology:

• Identity and trust mechanisms, comprising federated identity management, trust management, and
federated access.

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 20

• A Federated Catalogue, comprising offerings of assets (i.e., data and services) that describe
themselves in a FAIR (findable, accessible, interoperable, reusable) way.

• Sovereign Data Exchange, ensured by policies, usage control, and security concepts.
• Compliance in a sense of organization and governance (defining the rights and obligations between

service providers and consumers, and the process of onboarding participants and their assets into
the ecosystem), but also supported technically via certification and continuous monitoring

In being compatible with the Federation Services, providers and their assets can fulfil the architectural
principles as follows:

Requirements from future alignment with Gaia-X

AR 3.X.1

Security by design:

Security considerations are addressed by secure and sovereign data exchange, as well as
compliance concerns.

AR 3.X.2

Privacy by design:

Identity and Trust provide the foundation for privacy. Compliance with privacy
requirements is further ensured by the mechanisms for sovereign data exchange.

AR 3.X.3

Enabling federation, distribution, and decentralization:

The Federation Services themselves are designed to operate in a federated, distributed, and
decentralized manner. The Federated Catalogue encourages providers to offer services on
all layers of abstraction, from infrastructure as a service to data as a service. Their machine-
processable and semantic Self-descriptions enable automated deployment.

AR 3.X.4

Usage-friendliness and simplicity:

APIs, which can be found via the Federated Catalogue), enable the construction of human
user interfaces.

AR 3.X.5

Machine-processability:

This is ensured by Self-descriptions of assets in the Federated Catalogue, which comprise
usage policies and may point to APIs. APIs further enable automation.

AR 3.X.6

Semantic representation:

Self-descriptions in the Federated Catalogue make assets FAIR (Findable, Accessible,
Interoperable, Reusable).

2.1.4. Architecture requirements related to smart contracts

Smart contracts are one of the areas of concern for the TRUSTS architecture. The main goal is to develop the
necessary concepts for using smart contracts in the context of the European Data Market delivered by the
TRUSTS project. This includes the technical foundations for ensuring the integrity and authenticity of such
contracts as well as the analysis of the legal challenges brought about by smart contracts, such as issues of
validity, enforceability, and interpretation. Related to this, the technical challenges and the legal issues
regarding the fact that smart contracts are written in executable code instead of natural language, will be
examined by the partners with legal expertise in the project.

The following requirements for the architecture of the TRUSTS platform are specified:

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 21

Requirements related to smart contracts

AR 3.2.1

Smart contracts based on policies:

It should be possible to create smart contracts based on policies for data sharing / service
usage. The policies define how the data / service can be handled by a data consumer. When
a data consumer accepts a policy, a contract is created between the data provider and the
data consumer based on the accepted policy. Based on this contract, a transaction will be
created by the seller in this contract. The transaction will be sent to a blockchain instance.
It contains the contract details, e.g., the seller, the buyer, and information about the data,
so they can be recorded in a block within the blockchain for later checks. Before any further
transaction is recorded into a new block regarding the above-mentioned contract, a smart
contract is triggered which inspects the transaction and approves or denies it. The
compliance with the policy can be proved at every time.

AR 3.2.2

Logging of all transactions:

Every transaction between two participants should be logged. It should be possible to define
which information is logged for which kind of transaction.

2.1.5. Architecture requirements related to the interoperability of data marketplaces

One of the concerns of the TRUSTS platform is the interoperability between TRUSTS and other data
marketplaces. As described in D2.6, this includes the definition and implementation of interfaces to ensure
interoperability with other industrial data marketplaces as well as with EOSC initiatives. In addition, this is
related to analyzing and examining existing standards and interfaces with regards to their suitability for
interoperability. This will result in the development of an interoperability solution, which provides the
necessary technical functionality to interoperate with a selected set of existing data marketplaces and EOSC
initiatives. The work already done is described in deliverable D3.5. The interoperability solution is envisaged
as a client-server architecture consisting of a data exchange component residing on the premises of TRUSTS
as well as another component residing on the premises of an external data marketplace or EOSC initiative,
respectively.

The successful implementation of the interoperability solution requires a set of components. The
architecture is based on a careful evaluation of both existing data marketplaces as well as EOSC initiatives.
This involved the analysis of technical and operational features such as the provided resources (e.g., data
assets or search functionality) or available APIs. It involves a metadata schema for data assets based on
existing schemas such as the IDS Metadata Model, two components establishing metadata and/or data
transfer between TRUSTS and external data marketplaces and EOSC initiatives, a registry of data
marketplaces containing up-to-date information about external data marketplaces/EOSC initiatives, as well
as a graphical user interface for the interoperability solution. The resulting architecture requirements
remained unchanged and are as follows:

Requirements related to the interoperability of data marketplaces

AR 3.3.1

Metadata schema for data assets:

A documented metadata schema building on top of existing schemas, such as the IDS
Metadata Model for describing resources and datasets but extended to data assets.

AR 3.3.2
Data exchange client component:

A module that can be integrated into a common data management platform which will
enable the exchange of information about data products across a federated data markets

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 22

network. An external data market should be able to integrate this software library with ease
and be able to expose information about its data products to TRUSTS as a result. The library
should also serve as a basis for connecting TRUSTS with EOSC.

AR 3.3.3

Data exchange TRUSTS component:

This component resides on the side of TRUSTS and communicates with the Data Exchange
Client Component. It receives the input from the Data Exchange Client Component and
converts it into the format required by TRUSTS, subsequently storing the received data in
the TRUSTS data storage.

AR 3.3.4

Registry of data markets:

This component will be essential for having up-to-date information about external data
markets (metadata schemas, APIs, platforms) currently used in the sector. The information
in the registry will assist in identifying the external parties most suitable for the
testing/piloting of the TRUSTS developed interoperability solution.

AR 3.3.5

Administrative interface:

There should be an administrative interface for the TRUSTS operator that enables them to
add, update or remove external data markets supporting the developed interoperability
solution from the TRUSTS platform. This will be the mechanism by which the TRUSTS
operator decides which data markets to connect to. The process can be facilitated by
automatically linking data markets listed in the Registry of data markets.

2.1.6. Architecture requirements related to data governance

The different types of assets that are to be exchanged between participants in the TRUSTS platform have to
be described in a consistent and well-defined manner, so that different components involved in the exchange
can take appropriate actions. These descriptions, as documented in deliverable 3.7, are of different
dimensions which, in turn, are interpreted and acted upon by different classes of components. For example,
descriptions pertaining to usage policies are chiefly interpreted by the Smart Contract Executor component,
although they also require a human-readable rendering in the different platform interfaces. In this sense, the
TRUSTS knowledge graph serves as a vocabulary with which to express the functional requirements of the
platform in a way that is sufficient for components to communicate.

The TRUSTS knowledge graph, which comprises the ontology called TRUSTS Information Model, the
metadata about assets, participating organizations, policies and components, as well as the controlled
vocabularies used in these metadata, is supported on a set of software components. The communication,
security and configuration of these components, as well as their specific location within the platform, are
dictated by the different uses of the Knowledge Graph across TRUSTS, as well as by intrinsic properties of the
components themselves. From these, a set of architectural requirements were first collected and reported
upon in Section 2.1.6 of deliverable 2.6. After a first iteration of platform implementation, and the conclusion
of the first stage of use-case trials, these requirements have undergone small alterations, as documented
below.

AR 3.4.1 (Every TRUSTS platform instance is a distributed set of nodes), AR 3.4.2 (Each node runs software
components), AR 3.4.4 (Each node has an internal directory of running software components), AR 3.4.7 (A
node must be able to run apps), AR 3.4.10 (Recommendations in a node), AR 3.4.10 (Managing vocabularies
in a TRUSTS ecosystem), and AR 3.4.12 (User interfaces in a TRUSTS ecosystem) remain unchanged from the
description enclosed in D2.6.

AR 3.4.3 (Each node runs an instance of a connector implementation) has been modified in three ways: i) the
reliance on the specific IDS Connector implementation has been relaxed. ii) The requirement for exchange of
IDSCP messages has been updated to IDSCPv2, iii) the connector is now required to expose a REST-ful API
that can serve as backend to the different platform interfaces. iv) This API must expose endpoints to satisfy

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 23

the entire resource-onboarding process: policy, resource, distribution and artifact creation, as well as linking
between these different types of entities.

AR 3.4.5 (A node can internally be a distributed node) This requirement, meant to support high-throughput
data processing, has yet to be fully realized as of writing. However, it has become apparent that such
distributed nodes would require an additional routing mechanism not mentioned in D2.6. Namely, messages
exchanged between the different components in this service must be handled in a manner which is
transparent to the Connector implementation.

AR 3.4.6 (The TRUSTS platform has at least one Central Node) The importance of the Central Node has
become clearer after the first implementation phase. In addition to the details specified in D2.6 about the
central node, the following extra requirements for the central node have been identified from the point of
view of metadata management and data governance

• It must host an IDS Broker component that can respond to SPARQL queries about the metadata it
collects from other nodes,

• It must provide security mechanisms to ensure that only queries coming from the right nodes are
served.

AR 3.4.8 (Managing of assets in a node) The notion of an Asset Server, as mentioned in D2.6, has seen several
concrete implementations in the first iteration of platform development. Namely, for the case of Datasets,
the CKAN component which provides interfaces also provides the functionality of serving assets, and, for the
case of services and applications, other containers running within the node satisfy this role. In that sense, an
Asset Server is not a specific component but, rather, a role that several components (both TRUSTS- and
organization-provided) can play. Any component playing that role must satisfy the following requirements
not mentioned in D2.6:

• They must maintain a consistent hostname within the node, which is to be made known by the node's
connector and Dataflow Routing mechanism (see also AR 3.4.13 below).

• The exact access procedure to their endpoints must be describable using the TRUSTS-IM (see D3.7).

AR 3.4.9 (Harvesting of metadata in a node). The metadata mapper is tightly coupled to the interoperability
with external data initiatives (as per Task 3.3). However, this operation is also envisioned to be deployed in
any corporate node in the case where large amounts of datasets are to be offered. In this case, it is required
that all dataset ingestion processes be performable in a programmatic manner (i.e., not only through a user
interface). For this, the new requirement of the Connector to expose a rest API (See above) must be satisfied.
Likewise, routing to whatever component is hosting this large quantity of datasets must be supported by the
Dataflow Rouging mechanism.

AR 3.4.13 (Dataflow Management) A new requirement has emerged regarding the routing mechanism.
Namely, the routing mechanism must consult the TRUSTS KG in order to properly route requests. Namely, a
node consuming an asset must set up an endpoint for the clients (e.g., browser) that it is serving.

2.1.7. Architecture requirements related to platform development and integration

The architecture developed in TRUSTS must accommodate the reuse and integration of existing software
components, software components provided by the above-mentioned initiatives. In addition, components
developed by the project’s technical partners need to be integrated into the TRUSTS platform. The new
platform should be easily deployable into widely used operating systems. As many potential participants as
possible should be covered, participants who connect new or existing information systems to the TRUSTS
platform. The platform should provide access to the TRUSTS ecosystem in a secure way for both corporate
and individual users, provided they satisfy the requirements for participation.

Implementation of the TRUSTS platform has already begun at this point in the project. An implementation of
the TRUSTS platform that integrates a selection of existing open-source components with newly developed
components is being further developed and tested in order to cover the functional requirements of the

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 24

project. We have concluded that the platform architecture should be built around flexible and secure
components that can be easily deployed. In addition, infrastructure should be offered to provide flexibility
with regards to the types of services or protocols used in order to maximize the types of existing solutions
which can be offered by participating organizations.

The TRUSTS architecture should be independent from an operating system, easy to deploy, and simple to
adapt. In addition, one of the most important considerations is the preservation of security and privacy by
the platform. For this reason, the platform should be built as a network of secure and sovereign nodes which
can communicate in a peer-to-peer fashion. In addition, each node should have the means to control how
any data is used by any of the services and applications which are deployed on that node. This also allows
the mitigation of security breaches by easily excluding potentially compromised nodes. Finally, the TRUSTS
platform should enable the deployment of services and portable applications independent of the technology
or development environment used to implement the service of applications, as long as a small set of API
requirements is fulfilled.

The resulting requirements for the architecture remained unchanged and are as follows:

Requirements related to platform development and integration

AR 3.5.1

Communication via a connector instance:

Communication between TRUSTS nodes should follow a standardized and secure protocol.
It should be possible to easily add new nodes to an existing ecosystem. For this purpose, a
connector component should be used as a universal communication component.

AR 3.5.2

Running a connector instance:

The source code of the connector component should be available for modification, if
needed. In addition, any required credentials or security certificates for running the
connector, should be provided by the TRUSTS operator.

AR 3.5.3

Communication between a connector instance and an application:

The Connector should provide means to communicate with any application inside the same
node, using routing of incoming and outgoing flows and this routing should allow for
dynamic changes. This communication should accommodate a large set of technologies
used to implement an application.

AR 3.5.4

Securing a connector instance:

The Connector should support the (existing) authentication, authorization and security
system inside the node.

AR 3.5.5

Connecting an application to a connector via an adapter:

It should be possible to create adapters for applications inside a node, which cannot be
directly connected to the Connector.

AR 3.5.6

Running components via docker:

All infrastructure which is provided by the TRUSTS platform in the form of shared
components, should run on Docker-Compose. This should include the connector, adapters
and other shared components.

AR 3.5.7 Usage control in a TRUSTS node:

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 25

All components running in a TRUSTS node should be connected to the usage control
component in order to check if any user-initiated action is permissible.

AR 3.5.8

Metadata and security in a TRUSTS node:

All infrastructure components provided by the TRUSTS platform should support the
metadata and security infrastructure of TRUSTS.

AR 3.5.9

Configurability of TRUSTS nodes:

All infrastructure components provided by the TRUSTS platform should allow any changes
to TRUSTS functionality with minimum coding. These changes should be done easily and
using configuration files where possible.

2.1.8. Architecture requirements related to brokerage and profiles for users and corporates

Another area of concern for the TRUSTS platform is brokerage and profiles for users and corporates (FR 6, FR
7, FR 8, FR 9, FR 17 and FR 25).

Specifically, the main objective related to this is the realization of a mapping between offerings and demands
of users, datasets and services. To realize this, a recommender system will be developed with the following
three goals: (i) extract, process and store user interactions (e.g., downloads) and metadata of
users/corporates, services/applications (we use the term “services” in the following) and datasets, (ii)
develop and provide recommendation algorithms to interlink users/corporates, services and datasets in this
tripartite recommendation setting, and (iii) collect user feedback (e.g., clicks) to evaluate and tune the
recommendation algorithms.

Based on these goals, three requirements for the architecture of the TRUSTS platform were identified. The
main requirement for a recommender system to work is data. Thus, the first goal deals with data handling,
processing and storing, which requires a mechanism in the TRUSTS platform that informs the recommender
system about new potential resources to be recommended (i.e., datasets and services) and interaction data
that the recommender system can use to train its algorithms (AR 3.6.1). The second goal deals with the
development and integration of recommendation algorithms. Here, the recommender system requires a
mechanism in the TRUSTS platform to give context to the recommendation requests (e.g., the current user)
and to present recommendation results (AR 3.6.2). Finally, the third goal is related to the evaluation and
tuning process of the recommender system. This translates to the requirement of providing users of the
TRUSTS platform with functionality for interacting with recommendation results (AR 3.6.3). More details to
these requirements are given in the table below:

Requirements related to brokerage and profiles for users and corporates

AR 3.6.1 Notification mechanism to provide data for the recommender system.
In order to provide the recommender system with data for training its algorithms, the
TRUSTS platform should provide a mechanism to transfer data to the recommender system.
Therefore, the recommender system will provide REST-based services to add (i) metadata
of datasets, (ii) metadata of services, (iii) metadata of users, and (iv) interactions between
those entities (e.g., if a user downloads a dataset). The metadata broker, or other
components of the TRUSTS platform, should use these services in order to notify the
recommender system when new entities or interactions come into the platform or when
existing entities are changed. Alternatively, the metadata broker should provide
standardized query interfaces for the recommender to query for changes to the set of
offered resources.

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 26

AR 3.6.2 User interface component to show recommendations.
For visualizing recommendation results to users, the TRUSTS platform should provide a user
interface component that is capable of showing an ordered list of recommendations. For
this purpose, the recommender system will provide REST-based services for six
recommendation settings: (i) recommend datasets to users, (ii) recommend services to
users, (iii) recommend datasets to services, (iv) recommend services to datasets, (v)
recommend datasets to datasets, and (vi) recommend services to services. The TRUSTS
platform needs to use these services to query recommendations by providing parameters
such as the current user, the currently viewed dataset or service, one of the six mentioned
use cases, the algorithm (e.g., collaborative filtering or content-based filtering) and the
number of recommendations to generate (the default value is 10).

AR 3.6.3 User interface component to interact with recommendations.
When recommendations are shown to users, the TRUSTS platform should also allow them
to interact with the recommendations, i.e., click on the recommendations to get additional
information. Thus, for every recommendation request, the recommender system will
generate a unique recommendation ID that is provided with the list of recommendations.
The TRUSTS platform should store this recommendation ID and, whenever a user interacts
with a recommended entity, inform the recommender system about this interaction, which
is interpreted as feedback to the recommendation. With this, the recommender system is
able to evaluate the quality of the recommendations and adapt the algorithms if necessary.
Furthermore, this allows us to conduct A/B tests and compare the quality of two types of
algorithms (e.g., collaborative filtering and content-based filtering).

When referring these requirements to the system architecture of the TRUSTS recommender systems (see
D3.12 and figure below), we can see that all interactions between the TRUSTS platform interface and the
recommender system happen via the service provider component of the recommender system. However,
data received via AR 3.6.1 will directly be passed to the Data Modification Layer (and with this to Solr),
recommendations for AR 3.6.2 will be generated via the Recommender Engine (with input of the
Recommender Customizer), and feedback received via AR 3.6.3 will be processed by the Recommender
Evaluator.

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 27

Figure 2: System architecture of TRUSTS recommender system.

Finally, in the current architectural vision of the TRUSTS platform, as described earlier, the sources of the
information mentioned above are threefold. First, the Broker which will register metadata on assets will
make available messages (or relevant parts thereof) regarding creation/modification of metadata to the
recommender system. Second, the contracting system, which will serve as a distributed ledger of
transactions, will be the source of data regarding user-asset interactions. Finally, the different user interfaces
of the platform will provide information regarding the interactions.

2.1.9. Architecture requirements related to privacy enhancing technologies

Privacy enhancing technologies (PETs) are an additional concern of the TRUSTS platform. Related to this are
the objectives of investigating, designing and improving cryptographically secure protocols that enable data
analysis of privacy-sensitive data. Consequently, the focus will be on practical aspects of cryptographic
building blocks such as, but not limited to, secure multiparty computation and homomorphic encryption.

The results of this research will enable parties to collaborate over their private sensitive data and run
advanced analytics on multi-party datasets while preserving the data privacy.

The requirements below support several methods to preserve data privacy. These requirements can be
fulfilled by using data encryption methods such as Homomorphic encryption and sharing that encrypted data.
Alternatively, other related methods can be used, like Ensemble Modeling that enables advanced analytics
over multiple datasets. Each of the data owners will execute the analytics separately on their premises while
sharing only the models' algorithm, which will preserve the data privacy.

The work on privacy enhancing technologies for the TRUSTS platform results in the following architecture
requirements:

Requirements related to privacy enhancing technologies

AR 4.1

Computation using distributed and controlled execution environments:

Since private personal data cannot leave the premises of the data owner, TRUSTS must
provide an option to run analytics on the data while preserving the privacy of the users
contained in the data. In order to collaborate over private personal data, TRUSTS should

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 28

supply the kind of cloud services that will be part of the computation as described in the
illustration below.

In case of using Homomorphic Encryption, each party encrypts its own data using its own
generated encryption key. This private key that is held all the time by the data owner is used
to decrypt the data and the analytic results. Parties do share their encryption public key
which is used by the common computation, but it cannot be used for decrypting the data.
In other cases where Homomorphic Encryption is not used, the data that is shared for the
computation cannot reveal the privacy of the raw data.

Figure 3: Illustration for AR 4.1: Computation using distributed and controlled execution environments

AR 4.2

Machine Learning using distributed and privacy preserving technologies:

In order to execute Machine Learning models in TRUSTS, the platform must provide a way
to develop, test and execute ML models, while supporting MPC /HM/Vertical Federated
learning and similar services.

Figure 4: Illustration for AR4.2: Machine Learning using distributed and privacy preserving technologies

AR 4.2 illustrates the option of two or more companies that collaborate using HE and
MKHE/Spooky key. A common model will be implemented by the parties and will be held in
TRUSTS servers. For each inference/prediction each party will have to send its HE data
(Encrypted by its own private key). The model will perform prediction over those inputs and
will provide encrypted results to each of the parties, while each result is encrypted with the
party specific key, therefore it can be decrypted only by the party (using its private key).

Federated Learning - Different parties having different data sets with different feature set
can also collaborate using Vertical Federated Learning. In D4.1 an Ensemble Learning was
presented as one of the options for VFL (New invention). This type of method enables each

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 29

party to develop its own model over its own data and inject the results in a common
ensemble model for common prediction/inference.

AR 4.3

Option of execution of distributed and privacy preserving technologies on servers
provided by the TRUSTS operator:

As described in the previous requirements, in order to collaborate over private sensitive
data, the data owner must run the relevant ML model on their own servers. In order to give
the data owner an alternative to using their servers for computation, TRUSTS should enable
the option to execute the relevant computation on TRUSTS servers, while enabling access
only to the data owner. This can be done for example using a virtual private network (VPN)
created by the data owner.

Figure 5 illustrates the generic use case where a party (in this case a startup) needs to
develop an analytic module over two other parties' private data (one buyer and two sellers).
Since the parties’ data cannot be shared, and it can only be used in secure/encrypted
methods which require computation, the collaboration will need to include massive
computation. Since the parties are not a cloud service provider, they will not provide
computation service to the buyer (they only want to sell their “data” and it is not their DNA
to provide computation). In that case TRUSTS will have to supply the computation part. In
order to protect the data, each party will have to create a private VPN over TRUSTS nodes.
The VPN will be created by each of the parties without using TRUSTS assist, and this is in
order to protect their data. (The parties will be the only ones who will have access to it). In
this architecture, data privacy will be preserved while advanced analytics can be made.

Figure 5: Illustration for AR4.3: Option of execution of distributed and privacy preserving technologies on
servers provided by the TRUSTS operator

AR 4.4

Option of execution of distributed and privacy preserving technologies on servers
provided by a TRUSTS participant themselves:

Private personal data cannot leave the servers or the premises of the data owner, therefore
trading with private personal data is not a legitimate option. Due to this, the TRUSTS
platform needs to provide an option to trade on the analytics performed on this data.
In order to enable this, the TRUSTS platform needs to enable computation on its side,

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 30

allowing the data owner to protect themselves with an isolated environment (such as a
VPN), as described in the illustration below:

Figure 6: Illustration for AR 4.4: Option of execution of distributed and privacy preserving technologies on
servers provided by a TRUSTS participant themselves

AR 4.5

Development of distributed services using privacy preserving technologies:

In order to preserve privacy of data while collaborating, a third party always needs to be
involved for the common computation. The third party is not exposed to the private data,
and it is only providing computation over encrypted data, over computed data, or over
public data.
In our architecture the TRUSTS platform will provide the third-party capabilities. It will
execute the HE common model, the ensemble model, it will be part of the MPC etc. In that
case the TRUSTS platform will need to provide an option to develop, test, and execute
services using privacy preserving technologies. In addition, capabilities for logging and
monitoring of these technologies needs to be provided. Those capabilities need to consider
the distributed nature of privacy preserving technologies on the TRUSTS platform.

AR 4.6

Scalability of the TRUSTS platform:

The TRUSTS platform needs to provide scalability for technologies which are dependent on
computation and network throughput for their performance.

AR 4.7

Ensemble Modeling:

The TRUSTS platforms should enable the exchange of pre-trained ML models between
participants wishing to execute Ensemble Learning algorithms.

2.1.10. Architecture requirements related to anonymization and de-anonymization

Data controllers, prior to sharing their data, need to become aware of the privacy risks in their data and apply
the appropriate anonymization measures. The privacy risks arise because of de-anonymization: the process
of identifying individuals in a dataset that does not contain any personally identifiable information (PII), such
as full name and address. To confront the privacy risks, anonymization methods have been introduced.

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 31

Anonymization methods distort a dataset in such a way, so that it conforms to a privacy model. In relation to
this, the aim is to provide an application that offers de-anonymization risk analysis modules for different
kinds of data, as well as anonymization methods that offer compliance to various privacy models. The
application’s aim is to raise awareness on the privacy risks of a data controller’s dataset, aid in the decision
of the anonymization measures and their extent and help data controllers comply with the general data
protection regulation (GDPR) by protecting the privacy of the individuals in their datasets.

The figure below gives an overview of the usage of the application. Given two actors – a data seller and a
data buyer – the usage flow is as follows:

1. The data seller (and optionally the data buyer) downloads the application from the TRUSTS platform
to their premises. The application needs to be executed on the TRUSTS users’ premises because non-
anonymized, privacy-sensitive, personal data are processed by the application, and such data should
not be uploaded to the platform. Additionally, to ensure that only verified TRUSTS users are using
the application, the platform needs to provide means of remote (i.e., from the users’ premises)
authentication.

2. The data seller imports their non-anonymized, privacy-sensitive, personal data to the application.
3. The data seller uses the de-anonymization risk analysis modules.
4. The data seller uses the anonymization modules.
5. The data seller transfers the anonymized data to the data buyer. This will be feasible using the

capabilities of the Dataspace Connector after filling a suitable formula, confirming that they already
applied the risk analysis and eventually applied anonymization, and confirming their responsibility
for uploading the data.

The application will be packaged as a docker container to facilitate smooth execution and minimal installation
and configuration by the TRUSTS users.

From our point of view, the de/anonymization toolkit is not directly related to the TRUSTS pipeline, in the
sense that it will not be executed on the TRUSTS platform, since this would require uploading private data,
which is not feasible. Rather, the user should be able to download the tools from the TRUSTS platform and
then apply the risk analysis / anonymization on their premises. The risk analysis tool implemented so far is in
the form of a docker that is capable for this requirement. If the user uploads the data to the TRUSTS platform
after applying risk analysis / anonymization, then this is his/her responsibility to be sure that the data is safe.
The assumption is that only safe data should be uploaded to the TRUSTS platform. Therefore, we assume
that there will be a mechanism to meet the legal issues, e.g., filling a formula prior to data upload, where the
users confirm:

I. that they applied the risk analysis and
II. that they take the responsibility for uploading the data.

Also, we assume that the architecture of the TRUSTS Platform will consider providing a possibility for
providing our tools for download. The setup described above is the same concept that is already described
in the architecture Section 2.1.10.

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 32

Figure 7: Architecture requirements related to anonymization and de-anonymization

The resulting requirements for the architecture are as follows:

Requirements related to anonymization and de-anonymization

AR 4.3.1

Applications need to be available to TRUSTS platform users for download

The task’s output is an application with de-anonymization risk analysis and anonymization
modules that will be used by data sellers and optionally by buyers if they are willing to
double check. Since the application needs to process non-anonymized, private, personal
data of a data seller, the application needs to be available for download, in order for it to
be executed at the users’ premises

AR 4.3.2

Applications need to be hosted on the platform in a form that allows execution on the
users’ premises

In order to facilitate smooth execution and minimal installation and configuration, the
application will be packaged as a docker container. Such a package, however, could be
rather sizable (hundreds of MBs to a few GBs). The platform needs to be able to host such
sizable files/packages.

AR 4.3.3

Login and Authentication for Applications

In order to make sure applications are used only by the TRUSTS platform users, logging in
to the application and authentication should require validation by the platform.

AR 4.3.4

IDS Connector

The transfer of anonymized data from a seller to a buyer has to be done through IDS
connectors installed on the premises of the users. The platform should be able to support
the installation of IDS connectors on the users’ premises.

AR 4.3.5 Confirmation formula

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 33

Data seller should fill a suitable formula, confirming that they already applied the risk
analysis and eventually applied anonymization, and confirming their responsibility for
uploading the data.

2.1.11. Architecture requirements following from the usage of Comprehensive Knowledge
Archive Network software

As described in D2.6, the TRUSTS platform includes the pre-existing, widely used, data management software
known as CKAN. This component plays the role of user-facing interface, serving as a development framework
for all user interfaces that are to be included in the platform. Importantly, the metadata input interfaces that
are common to all data management platforms are highly related in functionality to what is required of the
TRUSTS platform in terms of depositing and publishing assets. Likewise, CKAN acts as a file serving component
into which those wishing to provide a dataset can upload it, in which case CKAN will store it, keep it in sync
with its metadata, and prove API’s for its access. Finally, the file-storing capacity of CKAN is also exploited for
other types of assets, namely, the specification files of applications and services (OpenAPI) are also deposited
into and served by CKAN, as well as the deployment files of applications.

CKAN has been selected to become a central component during the establishment of the TRUSTS platform
given the following advantages:

• Significant overlap of existing CKAN features with TRUSTS requirements.
• Availability of data cataloging functionality.
• Included search functionality using Solr.
• Deployable using container technology.
• Different publicity levels for assets, i.e., public or private.
• Robust and mature solution. Thousands of productive instances are deployed worldwide.
• Widely used by a plethora of data providers, e.g., governments (e.g., Australian Federal Open Data

Portal) or other players (e.g., AQUACROSS).
• Active maintenance by, and responsiveness of, the CKAN community.
• A wide range of existing CKAN extensions that fulfil the requirements of TRUSTS, e.g., a harvesting

extension, a DCAT extension, or an OAUTH2 extension.
• The availability of a convenient extension mechanism facilitating the creation of features specific to

TRUSTS requirements.

Several other functionalities that were identified in the requirement elicitation process of WP2 will also be
satisfied using CKAN, even when the out-of-the-box version does not include them. In this case, extensions
are being developed that are to leverage the plug-in mechanisms of CKAN. In particular, the User Interface
will be customized and extended, and the metadata captured by the interface will be forwarded to the
metadata broker to continue the rest of the ingestion process.

Requirements following from the usage of CKAN

AR 3.3.9

CKAN extension mechanism

TRUSTS components should ideally be integrated using CKAN’s built-in extension
mechanism. Developers need to consider this and design and develop their solutions in a
way that they can be easily integrated into CKAN.

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 34

2.2. Summary of architecture requirements
In this section, all previously listed architectural requirements are summarized. The architectural
requirements are grouped into architecture requirement summaries, labelled ARS. Compared to the
summaries listed in D2.6, the ARS have remained the same. A short description, usually one sentence long,
of each ARS is provided. The original architectural requirements which are summarized by an ARS, are listed
in the right most column. Every original architectural requirement is included in at least one ARS.

Regarding the two new architectural requirements, introduced in the previous section, AR 4.3.5 was added
to ARS 5 and AR 3.4.13 was added to ARS 13.

Table 2: Summary of architecture requirements

ARS ID Short description Original
AR
numbers

ARS 1 Smart contracts, which are based on policies, are supported. 3.X.1

3.X.5

3.2.1

ARS 2 All transactions on any node, which is part of a TRUSTS platform instance, are
logged.

3.X.1

3.X.5

3.2.2

ARS 3 All data assets / data products in a TRUSTS platform instance, use metadata
schema or vocabularies.

3.X.5

3.X.6

3.3.1

3.4.11

3.5.8

ARS 4 External data marketplaces can be integrated into a TRUSTS platform instance. 3.X.3

3.3.2

3.3.3

3.3.4

ARS 5 The operator of a TRUSTS platform instance can use an administrative interface.
Users of the platform also have an interface available.

3.X.4

3.3.5

3.4.12

4.3.5

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 35

ARS 6 Every TRUSTS platform instance is a distributed set of nodes. 3.X.3

3.4.1

ARS 7 Each node runs software components, which are distributed as docker containers,
and can be configured via configuration files.

3.X.4

3.X.5

3.4.2

3.5.6

3.5.9

ARS 8 Each node needs to run an instance of the connector component. It is required for
communication between nodes and within a node.

3.X.1

3.X.2

3.X.3

3.4.3

4.3.4

3.5.1

3.5.2

3.5.3

3.5.5

ARS 9 Each node has an internal directory of running software components. 3.X.3

3.X.5

3.4.4

ARS 10 A node can internally be a distributed node itself. 3.X.3

3.4.5

ARS 11 Every TRUSTS platform instance has at least one node which runs an instance of
the Broker component.

3.X.3

3.X.6

3.4.6

ARS 12 A node must be able to run apps on premise. 3.X.3

3.4.7

4.3.1

4.3.2

ARS 13 Assets (such as data assets) in a node can be managed locally. 3.X.3

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 36

3.X.5

3.4.8

3.4.13

ARS 14 A node is able to harvest metadata from its local assets. 3.X.3

3.X.5

3.4.9

ARS 15 Recommendations in a node are integrated into the TRUSTS platform, which
provides data, delivers recommendations and returns feedback.

3.X.4

3.4.10

3.6.1

3.6.2

3.6.3

ARS 16 Instances of the connector component support existing security infrastructure
inside of a node, and connect it to the usage control of the TRUSTS platform.

3.X.1

3.X.2

3.5.4

3.5.8

4.3.3

ARS 17 Computation using distributed and controlled execution environments is possible
in every instance of the TRUSTS platform.

3.X.1

3.X.3

4.1

ARS 18 Machine Learning using distributed and privacy preserving technologies is
possible in every instance of the TRUSTS platform.

3.X.1

3.X.2

3.X.3

4.2

ARS 19
Every instance of the TRUSTS platform provides the option of execution of
distributed and privacy preserving technologies on nodes provided by the
operator of the instance.

3.X.1

3.X.2

3.X.3

4.3

ARS 20
Every instance of the TRUSTS platform provides the option of execution of
distributed and privacy preserving technologies on servers provided by a TRUSTS
participant themselves.

3.X.1

3.X.2

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 37

3.X.3

4.4

ARS 21
Development of distributed services using privacy preserving technologies is
possible in every instance of the TRUSTS platform. (This refers to Devops.)

3.X.1

3.X.2

4.5

ARS 22
Every instance of the TRUSTS platform provides scalability for services and apps
running on the platform instance.

3.X.3

4.6

ARS 23
The user interfaces of all TRUSTS components are integrated using the CKAN
extension mechanism.

3.X.4

3.3.9

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 38

3. Technical architecture of the TRUSTS platform

As the blueprint for the results of the TRUSTS project, the TRUSTS platform technical architecture also
represents the foundation for instances of the TRUSTS platform that will be provided by one or more TRUSTS
operators after the duration of the project.

This section presents the technical architecture of the TRUSTS platform. The revised technical architecture
incorporates feedback from the technical and non-technical project partners. The technical partners
provided feedback based on the platform implementation. The non-technical partners provided feedback
from an innovation perspective and based on the knowledge gained after the first phase of use case trials, in
terms of component descriptions, interconnections and other technical details of the architecture.

First, a general overview of the architecture is given, and the most important concepts of the architecture
are summarized. This is followed by a description of each component of the architecture, as well as how
components are connected within the platform and to external data marketplaces for the purpose of
interoperability and federation. The component descriptions are followed by an overview of the mapping
between functional requirements (FRs) and components, and the mapping between architectural
requirements (ARs) and components.

3.1. Overview of the technical architecture
The technical functionality of the TRUSTS platform has already been described in D2.6 and is again
summarized in this section to provide a high-level overview of the architecture as a whole.

As explained in the first version of this deliverable and as also illustrated in Figure 8, the TRUSTS platform
consists of a set of interconnected nodes, which can be of three types: Central Node, Corporate Node, and
User Portal Node. Each node is owned and operated by different organizations. The set of interconnected
nodes is explained in Section 3.1.1 in more detail. These nodes form the basis for a trusted exchange of digital
assets. Each node is a computing environment (e.g., a virtual machine). Each computing environment runs
standardized components to support the various functionalities of the platform. Components deployed
within a node are interconnected via a network environment provided and secured by the node’s operator.
Both the nodes and the standardized components running on these nodes are described in more detail below
and are illustrated in Figure 8. By using a standardized set of components in a node, a consistent set of
functionalities is provided to the TRUSTS platform participants. The functionalities that the platform should
provide are defined by the functional requirements, which are described in D2.3. The standardized set of
components can also be used to enforce restrictions that affect, for example, trading and access to assets
within nodes. The set of components, as well as a description of how these components are used and how
they are related to the functional and architectural requirements, can be found in Section 3.2.

Along the components, common to all nodes, organizations can execute their in-house developed
applications and services. These applications and services can then be traded through the TRUSTS platform,
and can also, in turn, consume and produce other assets through the platform.

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 39

Figure 8: Diagram of the technical architecture

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021

 Page | 40

Figure 9: Overview of networks involved in the TRUSTS platform

Connections coming from outside the node are first received by the Connector component. From the
Connector component they are distributed to other components. Figure 9 shows an overview of the networks
involved in the TRUSTS platform with the connector component as the central entity. In addition, the origin
of the components is indicated by color and the respective type of connection is named.

As described in D2.6, the IDSCPv2 communication protocol is used for communication between the
interconnected components. The IDSCPv2 protocol, apart from the standard asymmetric-key encryption of
modern HTTPS connections, allows for conveying information specific for the functionalities of the platform.
This includes user identification tokens, names and ports of the different nodes involved, as well as IDs of the
components they are destined to. A schematic of these network connections is shown above.

The previous version of Figure 9 did not include the network connection to external data markets, which is
established via the standardized Data exchange TRUSTS component within the Central Node. The
interoperability of the TRUSTS platform with external data markets and EOSC initiatives is described in
Section 3.1.4.

3.1.1. Types of nodes

The nodes shown in Figure 8 are those that are already described in the previous version of this deliverable:
User Portal Node, Central Node, and Corporate Node. The two nodes that must be hosted by a specific
organization, referred to as the TRUSTS Operator, are the User Portal Node and the Central Node. These
nodes host a set of services necessary for the operation of the platform as a whole. Accordingly, the TRUSTS
Operator occupies a special position of trust with respect to the other organizations hosting nodes. Any other
node is referred to as a Corporate Node.

• Corporate Node. Is used by partners of TRUSTS that have complex infrastructure and participate in
TRUSTS. They can have many users and many services and applications that are provided or
consumed via the TRUSTS platform. They can set any authorization system and communication
structure inside their nodes. The TRUSTS Operator is not responsible for setting up or supporting
instances of corporate nodes but will provide detailed instruction manuals and all necessary

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 41

software. Among the components being set up, is the Corporate Interface, a web application through
which the organization’s users can interact with the TRUSTS platform.

• User Portal Node. Is created to cover the needs of individual users of the TRUSTS platform. It is set
up and maintained by the TRUSTS Operator. By accessing this node, individual users can benefit from
some of the functionalities of the TRUSTS platform, without the complexity of setting up a corporate
node. Additionally, it is the entry point for all organizations intending to join the TRUSTS platform, as
it provides landing pages, legal information, and setup instructions. One of the components included
in this node is the platform Interface, which acts as the main point of access to the above-mentioned
functionalities. In principle, the TRUSTS platform could have more than one User Portal Node.

• Central Node. Exists to support the operation of the whole TRUSTS platform, playing the role of
authorization, monitoring, smart contract executor, catalog, application repository, among others.
This node is created and maintained by the TRUSTS Operator.

For an organization to install a TRUSTS node, they must enter a subscription agreement with the TRUSTS
operator, after which they will be provided with a series of software artifacts, cryptographic certificates and
instruction manuals for the set-up. This will involve, among other steps, creating a dedicated computing
environment with a controlled set of open ports and other firewall rules. These rules shall imply, for example,
that the only connection between the node and the internet will be through the Connector component.
Furthermore, it shall allow for other connections inside the organization’s private network, in order for
applications acquired through the TRUSTS platform to be accessible to the organization’s users, for example.
Finally, a set of technical information exchanges should be carried out between the TRUSTS operator and the
node operator, for example, regarding a set of IP addresses and ports which are to be contact points between
the nodes.

3.1.2. Data sets / services / applications

The three types of assets that are envisioned to be traded among the participants of the TRUSTS platform
have remained. The three types of assets are listed below.

Dataset. These are static files which can be traded. They are equivalent to the notion of DCAT:Dataset, in
terms of metadata and scope. These files are transmitted directly from provider to consumer, and once they
have been received, they are, from the technical point of view, mere files in the consumer’s file system.

Service. These are computer programs which are executed in the provider’s node. They can, upon contractual
agreement, be executed on request of a consumer with the input of their choice. Services are envisioned to
function as do standard web services: a server is running and accepts connections, processes the input, and
returns the output to the requester. There is no prescription on the stateful-ness of services, but they must
expose an HTTP interface. Services are accompanied by a description bundle, which consists of a standardized
description of the different endpoints that it exposes, in order to enable automatic configuration of routing
mechanisms and of clients.

Application These are computer programs which are executed in the consumer’s node. They are distributed
as description bundles, which consist of a combination of container images, deployment scripts,
configuration files, and standardized descriptions of the endpoints exposed by the application. The provider
of the application has total freedom regarding implementation and functionalities and can choose to make
the application accessible only through the consumer node’s Dataspace Connector instance, thus enabling
the use of TRUSTS provided functionalities, such as user authentication.

3.1.3. Connections within the TRUSTS architecture

Seven specific data flows are illustrated in the general architecture diagram (Figure 8). These are meant as
examples of the interactions between the different components in different nodes.

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 42

Communication protocols used by components within the TRUSTS platform

To properly and fully integrate components and services within the TRUSTS platform, those components and
services need to provide a description of existing interfaces based on the best practices which are
summarized by the REST (representational state transfer) paradigm. The REST paradigm for describing
services is the most widely used web service interconnection approach and the most common standard in
interaction between distributed software components. Additionally, services using REST are much easier to
test compared to other service specifications, such as MQTT and SOAP. RESTful services have no restriction
on the size of messages and are a lightweight approach to integration. RESTful services are supported by the
connector component, which is used in the TRUSTS platform.

Ingest metadata

When an organization wishes to make an asset, it possesses available through the TRUSTS platform, it must
make metadata about the asset available. This process is referred to as onboarding of assets in the
requirements documents.

The origin of the metadata can be a metadata storage about datasets (e.g., a directory in a file system, a csv
file, a data management platform), a machine-readable description of a web service, or a standardized
description of deployment and configuration of an application. These three sources are all accessed, as per
input by the user in charge of onboarding, by the Corporate Interface running in the organization’s node,
which collects the metadata and adds to it metadata about the node itself. This process can be assisted by
the Metadata Mapper component which can convert from several metadata schemas into the one being
used by the TRUSTS platform. Finally, the Corporate Interface also provides the user with the means to
specify the contracting options by which the asset in question will be made available.

When the user is ready to make the asset available for purchase and access through the TRUSTS platform,
they can request the Corporate Interface to send information about it to the Broker component present in
the Central Node. The broker then stores this metadata in the authoritative central metadata repository,
which the Platform Interface in the User Portal Node, or the Corporate Interface in any Corporate Node, will
query.

Ingest:

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 43

Discover and buy asset

When a user wishes to acquire an asset through the TRUSTS platform, they must first present credentials
either in the Platform Interface or in any Corporate Interface to which they have access. This interface will
present them with the tools necessary to search, select an asset and select access options (including
contracting and billing). Once the process is complete, a record of the transaction is entered into the
responsible component in the Central Node. Currently, the Dataspace Connector is responsible for
rudimentary contract negotiations. In the future, the Smart Contract Executor will take over this functionality
and be added to the architecture accordingly.

Discover:

Buy:

Buying an asset consists in

1. The consumer chooses a contract and sends the offer to the provider.
2. The provider accepts the offer (which can be done automatically).
3. The provider connector grants the consumer the appropriate access rights to the asset and sets up

the internal routing so that the asset is reachable.
1. In the case of datasets, these routes will point to the corresponding asset providing

component (CKAN in the case of manually uploaded datasets).
2. In the case of services and applications, these routes will point to the provider’s CKAN

instance so that the consumer can download the asset’s description bundle.
3. In the case of services, additional routes must be created on the provider node so that

subsequent access to the service is also adequately routed.
4. The provider transmits the consumer the URI by which they can access the specific artifact purchased

(an artifact is a concrete copy of an asset, subject to a specific policy; similar to an actual book in a
library which the user can take home. See D3.7 for more details).

5. The consumer’s connector creates the routes so that the user’s client (or browser) can request the
asset in their connector, and the request is adequately routed to the provider so that the dataset or
description bundle can be downloaded.

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 44

6. In the case of services, the description bundle must be downloaded and additional routes are to be
generated on the consumer DSC to allow for access to the different REST endpoints provided by the
services.

Access bought asset

A user accessing an asset that they have acquired does by connecting to different endpoints in the node
corresponding to their organization. These requests will then be processed by their node’s Data Space
Connector to check for access control, and will then be forwarded to the providing node’s DSC which will also
check the access rights and, if appropriate, forward the request to the component serving the asset. The
exact sequence of these access operations depends on the types of assets being accessed, and are explained
in more detail below.

Access to Applications. Accessing an acquired application involves two different operations. The first
operation, called Installation, consists of 1) The consumer downloading the applications description bundle
2) an execution of a pull operation on the consumer’s docker daemon, which results in the application images
(as specified in the description bundle) being downloaded to the consumer node. 3) creation, in the
consumer’s DSC, of the routing necessary so that the application’s different endpoints are accessible through
the DSC.

Check access

The Dataspace Connector provides a set of rules for contract negotiation. A provider can choose between
different types of offers, e.g., a certain number of accesses or a certain period during which access is granted.
A consumer can choose between different offers.

Use controlled vocabularies

Several components within the TRUSTS platform make use of controlled vocabularies for, e.g., storing and
displaying labels describing assets, or enriching search results. This will be done by accessing a centralized
Vocabulary Service, running in the Central Node, which will be kept up to date by the TRUSTS operator. Access
to this service will be done using the SPARQL protocol, as well as a set of well-specified API endpoints that
the different components can use to check for updates.

3.1.4. Interoperability with external data markets and EOSC Initiatives

TRUSTS will develop a component, the so-called interoperability component, to connect to third-party data
markets and EOSC initiatives. This component will allow external stakeholders to connect with TRUSTS and
share and exchange their resources on TRUSTS. The interoperability solution consists of two components.
One component resides on the premises of the external data market or EOSC initiative. The other component
is a TRUSTS component that interacts with the client component. The components exchange information
such as metadata, which in turn will be stored in the storages of TRUSTS. The two mentioned components
are called Data Exchange Client Component and Data Exchange TRUSTS Component and are supported by
the Registry of Data Markets. This is illustrated in Figure 8. The Registry of Data Markets component contains
up-to-date information about existing data markets and will help to identify data markets suitable for
building the interoperability prototype. The three components mentioned are described in more detail in the
following section.

As described in D2.6, a significant challenge of the development of this component is the strong diversity of
the technological characteristics of external data markets and EOSC initiatives. Consequently, TRUSTS will
not develop a solution for each of them. Instead, TRUSTS aims to build a solution exposing the requirements

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 45

of TRUSTS, i.e., the TRUSTS metadata schema, which is in turn an extension of the IDS Information Model. It
is an open, non-proprietary model, based on widely accepted standards (such as DCAT) and covers a wide
variety of technological requirements. External stakeholders will turn their metadata and data assets into a
format understood by TRUSTS. The interoperability solution will be developed based on the requirements of
a select set of external data markets and EOSC initiatives. Since interoperability is a two-way action, TRUSTS
will also include the means for external parties to transfer the data into the TRUSTS platform. For example,
in the case of EOSC, it is planned that TRUSTS becomes a so-called EOSC provider. By becoming an EOSC
provider, the data assets of TRUSTS can also be shared with EOSC and made accessible via their
infrastructure.

3.2. Components of the architecture
In this section, all components needed to implement the technical architecture above are introduced. For
each component the following attributes are listed:

• Component number.
• Component name.
• Short component description.
• Input dependencies: the names of other components which provide input for the component.
• Output dependencies: the names of other components which require output from the component.
• Dependency changes with respect to D2.6 are marked as blue and strike-through text.
• Requirements addressed: references to the functional and architectural requirements which are

addressed by the component.

C1 Dataspace Connector

Interface to nodes in the TRUSTS platform. Provides certified connections between pairs of nodes. It is a
tool for data asset definition, creation and access granting or prohibition. It offers a mechanism for data
asset selling and buying (creation of offers and contracts). It supports a negotiation mechanism.

Input dependencies:

• Dataflow Router
• Corporate Interface
• Automated Certificate Management

Environment (ACME)
• Distributed Authorisation Component
• Metadata Broker

Output dependencies:

• Corporate Interface
• Platform Interface
• Broker

Requirements addressed:

FR 27, FR 28, FR 29, FR 31, FR 38, FR 39, FR 40, FR 41, FR 42, FR 43, FR 44, NFR 3, NFR 6

ARS 2, ARS 7, ARS 8, ARS 12, ARS 13, ARS 16, ARS 17, ARS 18, ARS 19, ARS 20, ARS 21

C2 Dataflow Router

Add-on to the Dataspace Connector that initializes and destroys routes within a node as required by
incoming and outgoing connection. For example, if there are N services running in a node (e.g., a CKAN

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 46

instance, some APIs) and the Dataspace Connector receives a request to access one particular service, this
component creates a route in the Apache Camel configuration of the connector.

Input dependencies:

• Corporate Interface
• Platform Interface
• Usage Control
• Trusted Connector
• Dataspace Connector
• Reverse Proxy
• Services Consumer Adaptor
• Operation Converter

Output dependencies:

• Corporate Interface
• Platform Interface
• Usage Control
• Trusted Connector
• Services Consumer Adaptor
• Operation Converter
• Reverse Proxy

Requirements addressed:

FR 27, NFR 6

ARS 8, ARS 9, ARS 10, ARS 16, ARS 22

C3 Reverse Proxy

For connections from a web-browser into nodes (e.g., for accessing portals), this component distributes
the requests among the different services. Implementation can be Nginx, Traefik, HAProxy or similar. It
must support the functionality of “middlewares”, namely, to be able to intercept requests, perform
arbitrary operations based on their parameters, like contacting external services, and then forward these
requests, possibly after URL rewriting.

Input dependencies:

• Automated Certificate Management
Environment

Output dependencies:

• Corporate Interface
• Platform Interface
• Mapping Builder
• Notification Service
• Asset consumer
• Business Support Services

Requirements addressed:

NFR 6

ARS 5, ARS 23

C4 Recommender System

Provide six recommendation use cases (RUC): (RUC1) recommendation of datasets to users, (RUC2)
recommendation of services to users, (RUC3) recommendation of datasets to services, (RUC4)
recommendation of services to datasets, (RUC5) recommendation of datasets for a given dataset, and
(RUC6) recommendation of services to a given service. For this, the recommender system processes
dataset and service metadata as well as interactions between users, services and datasets. Additionally,

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 47

the recommender system is evaluated and fine-tuned via implicit feedback (e.g., clicks on
recommendations).

Input dependencies:

• Broker + Metadata Storage

• Platform Interface

Output dependencies:

• Platform Interface

Requirements addressed:

FR 6, FR 7, FR 8, FR 9, FR 17, FR 25

ARS 15

C5 Platform Interface

This component should support users with opening accounts, searching for datasets and services (free and
chargeable) and consuming them. It should provide means to sign contracts with providers of datasets and
services. Additionally, it allows consumers to rate dataset and service providers. Finally, it will also serve
as default asset provider (i.e., file server) for the case of datasets and description bundles for services being
made available through the Platform Interface.

Input dependencies:

• Dataflow Router
• Recommender
• Vocabulary Service
• Metadata Mapper
• Broker + Metadata Storage

Output dependencies:

• Dataflow Router
• Trusted Connector

Requirements addressed:

FR 1, FR 3, FR 4, FR 5, FR 25, FR 27, FR 29, FR 30, FR 31, FR 32, FR 33A, FR 33B, FR 34, FR 36, FR 37, FR 44,
NFR 1, NFR 2, NFR 3, NFR 4, NFR 5

ARS 5, ARS 23

C6 Landing Page

A website for non-registered users to:

• learn about TRUSTS platform, legal terms, contact points, etc.
• enroll and login
• reset password

Input dependencies:

• Reverse Proxy

Output dependencies:

• Platform Interface

Requirements addressed:

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 48

NFR 5

ARS 5

C8 Notification Service

This component informs Consumers about changes in datasets and services that they already have access
to.

Input dependencies:

• Broker + Metadata Storage

Output dependencies:

• Notification Service

Requirements addressed:

FR 35, NFR 6

ARS 5, ARS 13, ARS 14

C9 Metadata Mapper

This component transforms existing metadata that organizations might have in their pre-existing data
stores, into the TRUSTS-IM specification (see D3.7). Once this metadata is converted, it can be ingested via
programmatic API access into the local Dataspace Connector and then broadcast into the Metadata Broker
for advertising to other participants.

Input dependencies:

• Mapping Builder

Output dependencies:

• Platform Interface
• Corporate Interface

Requirements addressed:

FR 23

ARS 3, ARS 14

C11 Mapping Builder

A user interface that helps providers build Mapping files to convert their metadata into the format
specified by the TRUSTS-IM (see D3.7). The result will be an RDF file complying with the RML specification.

Input dependencies:

• Vocabulary Services

Output dependencies:

• Metadata Mapper

Requirements addressed:

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 49

FR 23, FR 33A, FR 33B

ARS 3

C12 Corporate Interface

This component allows corporate inside TRUSTS Corporate node to manage the assets that they wish to
provide through the TRUSTS platform. Also, it should provide means to sign contracts with consumers of
datasets and services. Additionally, it allows consumers to rate dataset and service providers. Finally, it
will also serve as default asset provider (i.e., file server) for the case of datasets and description bundles
for services and applications.

Input dependencies:

• Usage Control
• Dataflow Router
• Metadata Mapper
• Recommender
• Services Consumer Adaptor

Output dependencies:

• Dataflow Router
• Trusted Connector
• Usage Control
• Recommender

Requirements addressed:

FR 1, FR 3, FR 4, FR 5, FR 27, FR 29, FR 30, FR 31, FR 32, FR 34, FR 36, FR 37, FR 44, NFR 1, NFR 2, NFR 3,
NFR 4, NFR 5

ARS 5

C14 Data Exchange TRUSTS Component

This component is deployed in TRUSTS nodes and ingests assets from third-party data-markets and EOSC
and its related initiatives into the TRUSTS catalog. It receives input from the Data Exchange Client
Component and converts it, if necessary, into the format required by TRUSTS. This component is also
connected to the Registry of Data markets, receiving information about data markets and EOSC and its
related initiatives connected with TRUSTS. Based on this information, the component connects to the
respective Data Exchange Client Components and acquires their metadata or data assets.

Input dependencies:

• Third Party Marketplaces
• EOSC and its related initiatives
• Registry of Data markets

Output dependencies:

• Metadata Mapper
• Usage Control

Requirements addressed:

FR 2, FR 4, FR 23

ARS 4

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 50

C15 Data Exchange Client Component

This component resides at the location of a third-party data market or EOSC initiative. It provides an
interface to specify and select data assets and to map their metadata schema into a format understood by
TRUSTS. The component communicates with the Data Exchange TRUSTS Component. Furthermore, it
communicates with the Registry of Data markets and updates in case of relevant changes.

Input dependencies:

• Third Party Data market
• EOSC and its initiatives
• Registry of Data markets

Output dependencies:

• Registry of Data markets
• Data Exchange TRUSTS Component

Requirements addressed:

FR 2, FR 4, FR 23

ARS 4

C16 Registry of Data markets

This component lists existing third-party data markets and relevant initiatives of EOSC. On the one hand,
this helps to form a community around TRUSTS. On the other hand, the component serves as an address
book routing the communication between the Data Exchange TRUSTS Component and the Data Exchange
Client Components installed on the premises of third-party data markets and EOSC initiatives.

Input dependencies:

• Data Exchange Client Component

Output dependencies:

• Data Exchange TRUSTS Component

Requirements addressed:

FR 2, FR 4

ARS 4

C17 Business Support Services

This component will be used for monitoring and administration TRUSTS activities. It allows for the
managing the list of connected organizations, monitoring of logs, and managing of fees collectable by the
TRUSTS operator.

Input dependencies:

• Smart Contract Executor

Output dependencies:

• Reverse Proxy

Requirements addressed:

FR 33A, FR 33B

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 51

C18 Broker + Metadata Storage

The broker, and its accompanying metadata store, serves a central repository of all metadata regarding
assets, participants and resources, as specified in the TRUSTS-IM (see D3.7). It is a web application that
serves as a wrapper of a Knowledge Graph that is compliant with the TRUSTS-IM ontology. It collects
metadata from the different corporate nodes and responds to queries about it that are issued by the
different platform interfaces.

Input dependencies:

• Corporate Interface

Output dependencies:

• Smart Contract Executor
• Business Support Services

Requirements addressed:

FR 1, FR 3, FR 5, FR 18, FR 21, FR 22, FR 23, FR 25, FR 26

ARS 11

C19 App Store

Apps are docker images that participant organizations can, after signing a contract with the provider, pull
and execute in their premises. The app store is a docker registry that is coupled with the TRUSTS platform
to ensure that (push or pull) operations are compliant with a contract. The app store must be connected
to the authentication and authorization mechanisms of the platform.

Input dependencies:

• None

Output dependencies:

• Trusted Connector
• Dataspace Connector

Requirements addressed:

FR 19, FR 24, FR 38, FR 39, FR 40, FR 41, FR 42, FR 43

ARS 12

C21 Vocabulary Services

All assets, organizations and components which are part of the TRUSTS platform are described as much as
possible in terms of controlled vocabularies. These include, for example, taxonomies of keywords, types
of assets, types of components, etc. These are maintained in this central location which provides other
components with access to the list and definition of the terms in the vocabularies.

Input dependencies:

• Reverse Proxy

Output dependencies:

• Mapping Builder
• Corporate Interface
• Platform Interface

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 52

• Broker + Metadata Storage

Requirements addressed:

FR 19, FR 20, FR 21, FR 22, FR 24, FR 25

ARS 3

C22 Distributed Authorisation Component

This is a component to support secure communication, authentication and authorization in TRUSTS
infrastructure. It should support ACME server functionality. Can be provided by a combination of the IDS
Dynamic Attribute Provisioning System (DAPS) implementation or the Small Step CA.

Input dependencies:

• Trusted Connector
• Automated Certificate Management

Environment (ACME)
• Business Support Services
• Reverse Proxy
• Dataspace Connector
• Internet Browser
• Custom Application

Output dependencies:

• Trusted Connector
• Reverse Proxy
• Dataspace Connector
• Internet Browser
• Custom Application

Requirements addressed:

FR 38, FR 43, FR 44, NFR 6

ARS 16

C23 Automated Certificate Management Environment (ACME)

This component enables automation for management of certificates in the TRUSTS infrastructure.

Input dependencies:

• Distributed Authorisation Component

Output dependencies:

• Trusted Connector
• Dataspace Connector
• Distributed Authorisation Component

Requirements addressed:

FR 38, FR 43, FR 44

ARS 16

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 53

C24 Smart Contract Executor

When access to a dataset is registered in a node, this action can result in triggering smart contract rules.
The Smart Contract Executor is the component responsible for receiving information about transactions
like this, entering it into an appropriate logging mechanism, and performing the operations specified by a
respective smart contract. The smart contract checks the ability of the consumer to get/use a
dataset/service from a provider. The result then is documented with a logging mechanism and returned
to the party which triggered the smart contract by telling whether the transaction was successful or not.
The Smart Contract Executor shall be queried by the interested parties at any time to verify the current
status of a contract or the sequence of operations pertaining to an asset they control.
This component stores smart contracts which have customizable input parameters which can be derived
from (1) asset metadata, (2) the offering, and (3) the contract participants to enable a given contract's
reuse for different transactions.

Input dependencies:

• Dataspace Connector
• Business Support Services
• Usage Control

Output dependencies:

• Dataspace Connector
• Usage Control

Requirements addressed:

FR 10, FR 11, FR 12, FR 13, FR 14, FR 15, FR 16, FR 17, FR 30, FR 38, FR 43

ARS 1, ARS 2

In summary, the following components are considered part of the TRUSTS technical architecture. Removed
components are marked as strike-through text:

• C1 - Trusted Connector
• C1 - Dataspace Connector
• C2 - Dataflow Router
• C3 - Reverse Proxy
• C4 - Recommender
• C5 - Platform Interface
• C6 - Landing Page
• C7 - Asset Consumer
• C8 - Notification Service
• C9 - Metadata Mapper
• C10 - Usage Control
• C11 - Mapping Builder
• C12 - Corporate Interface
• C13 - Services Consumer Adapter
• C14 - Data Exchange TRUSTS Component
• C15 - Data Exchange Client Component
• C16 - Registry of Data markets
• C17 - Business Support Services
• C18 - Broker + Metadata Storage
• C19 - App Store
• C20 - Identity Provider + Key Distribution System
• C21 - Vocabulary Services
• C22 - Distributed Authorisation Component

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 54

• C23 - Automated Certificate Management Environment (ACME)
• C24 - Smart Contract Execution

3.2.1. Updates made to the component list since the previous version of this deliverable

Compared to the first version of this deliverable, the following changes have been made to the component
list, based primarily on knowledge gained during the reporting period.

Asset Consumer Component. In the previous version of the architecture, the Asset Consumer was
responsible for allowing a user to log in to a platform node X using their web browser and access an asset on
node Y. The Asset Consumer component was removed because its functionalities are fulfilled by the
Dataspace Connector (DSC) component. All static files (Datasets or configuration bundles) that a consumer
acquires, will be served, from their perspective, by their own DSC. The routing will then be taken care of by
this connector.

Usage Control Component. The Usage Control component was removed for the same reason as the Asset
Consumer component, its functionalities are fulfilled by the DSC component. The Usage Control component
was an ad-on to the connector implementation. It was intended to provide access and usage control to
datasets and services. When a request to access an asset is received, this component should check if there is
a contract between provider and consumer for the said asset, and if that contract is in a valid state. The DSC
component is able to check whether access to a given asset should be granted.

Service Consumer Adapter Component. This component was used to offer services via the TRUSTS platform
that are deployed by a participant in their Corporate Node. The Services Consumer Adapter component was
removed, because its functionalities are fulfilled by the DSC component. When a client wishes to make use
of a service acquired through TRUSTS, it can access endpoints in its (the consumer’s) DSC. These endpoints
will be routed accordingly (and DATs attached to the requests) onto the provider's DSC which will be able to
check for access control policy fulfillment.

Identity Provider + Key Distribution Service Component. The identity provider + key distribution service has
been removed because, for the moment, platform-wide user-level authorization has been descoped. What
this entails is that granting of access to assets will be made to node, and authorization will be computed
based on the DATs that acompain requests.

Trusted Connector Component. The Trusted Connector has been changed to the Dataspace Connector,
since, as explained above, the Dataspace Connector provides functions that can be reused in TRUSTS.

3.2.2. Summary of connections between functional requirements and components

In the following we provide an overview showing which components need to address which functional
requirements. In order to be able to recognize the differences to the previous deliverable directly, newly
added components and requirements are marked in blue and removed components are crossed out.

Table 3: Summary of connections between functional requirements and components

ID of functional
requirement (FR)

IDs of components, which address the requirements

FR 1 C5, C12, C18

FR 2 C14, C15, C16

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 55

FR 3 C5, C12, C18

FR 4 C5, C12, C14, C15, C16

FR 5 C5, C12, C18

FR 6 C4

FR 7 C4

FR 8 C4

FR 9 C4, C19

FR 10 C24

FR 11 C24

FR 12 C24

FR 13 C24

FR 14 C24

FR 15 C24

FR 16 C24

FR 17 C4, C24

FR 18 C18

FR 19 C21

FR 20 C21

FR 21 C18, C21

FR 22 C18, C21

FR 23 C9, C11, C14, C15, C18

FR 24 C19, C21

FR 25 C4, C5, C18, C21

FR 26 C18

FR 27 C1, C2, C5, C7, C12

FR 28 C1

FR 29 C1, C5, C7, C10, C12, C20

FR 30 C5, C12, C24

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 56

FR 31 C1, C5, C12

FR 32 C5, C12

FR 33 C5, C11, C17

FR 33A C5, C11, C17

FR 33B C5, C11, C17

FR 34 C5, C12

FR 35 C8

FR 36 C5, C12, C20

FR 37 C5, C12, C20

FR 38 C1, C10, C19, C20, C22, C23, C24

FR 39 C1, C19

FR 40 C1, C19

FR 41 C1, C19

FR 42 C1, C19

FR 43 C1, C19, C20, C22, C23, C24

FR 44 C1, C5, C10, C12, C20, C22, C23

NFR 1 C5, C12

NFR 2 C5, C12

NFR 3 C1, C5, C12

NFR 4 C5, C12

NFR 5 C5, C6, C12

NFR 6 C1, C2, C3, C8, C22

3.2.3. Summary of connections between architecture requirements and components

In the following we provide an overview showing which components address which architecture
requirements. The differences to the previous deliverable can directly be recognized. Newly added
components are marked in blue and removed components are marked as strike-through text.

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 57

Table 4: Summary of connections between architecture requirements and components

ID of architecture
requirement
(AR/ARS)

IDs of components, which address the requirements

ARS 1 C24

ARS 2 C1, C24

ARS 3 C9, C11, C21

ARS 4 C14, C15, C16

ARS 5 C3, C5, C6, C8, C12

ARS 6 C13, C14

ARS 7 C1

ARS 8 C1, C2

ARS 9 C2

ARS 10 C2, C13, C14

ARS 11 C18

ARS 12 C1, C19

ARS 13 C1, C7, C8

ARS 14 C7, C8, C9

ARS 15 C4

ARS 16 C1, C2, C10, C20, C22, C23

ARS 17 C1

ARS 18 C1

ARS 19 C1

ARS 20 C1

ARS 21 C1

ARS 22 C2

ARS 23 C3, C5

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 58

4. Design considerations for the architecture of the TRUSTS
platform

The technical architecture of the TRUSTS platform is influenced in three ways: (1) by the functional and (2)
by the architectural requirements, but also (3) by the vision of the technical experts in the project.

The initial set of functional requirements were collected mainly from non-technical experts inside and outside
of the project and are reported in deliverable D2.2. The updated set of functional requirements is described
in D2.3. The architectural requirements, refined by the technical experts in the project, are listed in Chapter
3 “Technical requirements for the architecture”.

As already outlined in D2.6, the vision for the architecture is based on a consensus of the technical experts
who are participating in the project. The vision is expressed in several design considerations for the technical
architecture, which are described in this chapter.

In the first section of this chapter, the functional requirements are listed which are addressed by the
architecture as a whole. Then the functional requirements which are based on the use cases from WP5 are
described. This is followed by a description of two unique selling points of the TRUSTS architecture: the ability
to handle services as part of a data marketplace, and the ability to handle portable applications as part of a
data marketplace. Finally, it is described which components of the TRUSTS architecture enable the
establishment of trust between participants of an instance of the TRUSTS platform.

4.1. Functional requirements which are addressed by the architecture as a whole
The use of the components listed here could be summarized as follows: Each organization has a set of
components which, along with those deployed centrally by the TRUSTS operator, ensure that the assets it is
offering are accessed in a trusted manner and in accordance with the contract it assigns. Likewise, consuming
assets that are provided in the TRUSTS platform requires interaction with a set of components, so that
privacy, data ownership, and contractual requirements can be enforced.

Apart from the FRs that are addressed by individual components as listed in Section 3.2.2, the FRs that have
been of special interest when defining the architecture proposed here have remained the same as described
in D2.6:

• FR 28: TRUSTS should be able to be deployed as a federation of distributed, interconnected and
interoperable nodes.

• FR 5: The system should provide rich search mechanisms across all federated nodes for available
datasets and services

• FR 11: The system should ensure the integrity and authenticity of the smart contracts transactions
signed by its users

4.1.1. Functional requirements coming from the preparation for the use case trials

There are functional requirements that have been collected from further specification of the use-case
scenarios treated in WP5 and already summarized and referenced in D2.6. The three use cases are to be
executed in the frame of the TRUSTS project, as specified in deliverable D5.1. They make use of several
features of the architecture proposed in this deliverable. The use cases are addressed by the way services
and applications are traded and used in the TRUSTS platform. This is presented in the following according to
the architectural changes made in this deliverable.

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 59

Handling of portable applications on the TRUSTS Platform

Applications are software components which will be executed in the premises of the consumer, without any
data leaving their network. Their installation and execution by the consumer may be the subject of
contractual agreements, and the TRUSTS platform will provide technical means to enforce some of their
provisions.

As already described in D2.6, application providers onboard their applications through the Corporate
Interface in their node. The process of onboarding involves providing the metadata for the application, the
necessary files for its configuration and deployment, a machine-readable description of its interfaces, and
the directions to an application image available within the provider's node. The Corporate Interface creates
the appropriate bundle file. The metadata is included into the central node’s catalog.

When a consumer searches in their own Corporate Interface or in the Platform Interface, they will see a
description of the application and, upon entering a contractual agreement, will be able to download, on their
premises, the corresponding bundle. Then, this bundle will be decompressed, and the application image will
be, subject to verification of identity and contract, pulled from the appropriate image repository into the
consumer’s node. In contrast to the descriptions in D2.6, the messages mediating this pull operation will be
inspected and acted upon by the provider’s Dataspace Connector component.

Once the application image has been pulled, the configuration and deployment instructions contained in the
bundle will be executed and the application will be made available from within the consumer’s corporate
network, to be used either directly by human users or by other, pre-existing applications.

Optionally, if the application exposes an HTTP interface adequately described (see below), the provider can
choose to make their application accessible only through the Dataspace Connector deployed in the
consumer’s node. This would enable a fine-grained metering of application usage, and execution of smart
contract operations upon every request.

Handling of services on the TRUSTS platform

Services are software components which are executed on the provider’s premises. The access to these
services by the consumer may be the subject of contractual agreements, and the TRUSTS platform will
provide technical means to enforce some of their provisions.

As described in D2.6, services will be served by components installed by the provider according to their
respective technical guidelines. This will allow, for example, pre-existing applications already deployed to be
made available through TRUSTS, regardless of the operating system on which they are deployed, as long as
they provide HTTP interfaces.

The service provider is responsible for providing a machine-readable description of the service. This file and
the metadata required to describe the service form a bundle that must be assembled in the service provider’s
Corporate Interface as part of the onboarding process. The metadata is forwarded to the central metadata
repository and can thus be found via the platform interface.

When a consumer acquires the service, they will receive in their corporate node the corresponding bundle.
This bundle will be processed by the Dataflow Router in order to make the service accessible via the TRUSTS
platform. In contrast to the description in deliverable D2.6, a user accesses in the consumer's network then
the different endpoints of the service by making HTTP requests to the Dataspace Connector deployed in its
node, not to the Service Consumer Adapter. According to its integrated contract mechanisms, the Dataspace
Connector verifies authorization for use. If deemed adequate, the request is forwarded to the component
in the provider's infrastructure that actually provides the service.

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 60

4.2. The role of the components in enabling trust between participants
The connector component enables verification of the origin of all messages received. This verification ensures
that each request received comes from the TRUSTS platform and the originating node and user can be reliably
identified. The contractual validity of a request can be evaluated by the provider with the architecture
presented in this deliverable. This is described in more detail below and, compared to the description in D2.6,
adapted according to the revised architecture. As described in Section 3.2 the Dataspace Connector offers
rudimentary negotiation mechanisms.

1. Application providers will transfer applications only after the requesting messages have been
validated by the Smart Contract Executor / Dataspace Connector. Thus, the provider can rest assured
that only contractually valid transfers of their applications take place.

2. If the application is to be made accessible only through the consumer’s Dataspace Connector (only
possible in the case of applications providing adequately described HTTP interfaces), then the
application provider can request from the smart contract executor a detailed log of all access to the
application. Importantly, the application provider must develop in their application the security
mechanism to ensure that only requests which are accompanied by an adequately signed
authorization token are served. In this case, it is possible to utilize fine-grained contracts on an
application, for example, based on the number of requests.

3. Services exposed by a provider will be configured to only accept requests being forwarded to them
by the node’s connector component. The node’s connector component will evaluate the request
against the contract negotiations. Thus, the provider can rest assured that only contractually valid
requests are served.

4. The requests done to a service are logged also by the consumer’s node. This disallows incorrect
claims by the provider regarding access to the service, as the smart contract executor holds records
from both parties regarding access operations.

5. Dataset providers, likewise, can rest assured that all requests served are contractually valid, since
only then will they be forwarded to any serving component (e.g., the Corporate Interface).

6. All signatures and tokens that have been described will be forwarded to the destination component,
thus enabling any provider to check and log transactions on their own terms. Likewise, all certificates
used to issue these signatures and tokens will be known to all participants, as part of the organization
onboarding process.

Importantly, the metadata of all assets will include signatures (hashes) of all traded assets (application
images, service descriptions, datasets), which will allow the consumer to rest assured that the received asset
has not been tampered with. These signatures can, furthermore, be compared directly with those included
in the provider’s node catalog, thus reducing the need for trusts in the TRUSTS operator.

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 61

5. Conclusion

This deliverable summarizes the activities in task 2.4. “Architecture design and technical specifications” and
is the second and final version of this deliverable. It documents the blueprint for the technical results of the
TRUSTS project. The technical specifications provide the details which are required by technical experts in
order to instantiate the platform infrastructure and build on top of it or to extend it with their own
components, services and applications.

The second version of this report focused on the iterative refinement of the technical architecture of the
TRUSTS platform based on the knowledge gained by the project’s technical partners during the reporting
period and on feedback from the use case partners and from the non-technical project partners. The project
partners with a technical perspective have refined the architecture and document additional technical
specifications based on their experiences gained during the implementation of the platform.

A challenge for the design of the technical architecture of the TRUSTS platform was that the architecture
must consider the requirements and priorities of many different stakeholders, both inside and outside the
project. To address this challenge, the architectural requirements were collected from the initiatives the
TRUSTS platform is based on, namely Data Market Austria and International Data Spaces. In addition, the
architectural requirements from the Gaia-X initiative were collected, as we expect that the future
compatibility with Gaia-X is of strategic importance to the TRUSTS platform. We further expect Gaia-X to set
important impulses for the data economy in Europe by e.g., communicating with important groups of
stakeholders to set the agenda and by setting standards for technical and organizational issues, such as
certification.

The architectural requirements collected and grouped by areas of concern in the first version of this
deliverable have been refined in this deliverable. In total, 59 architectural requirements were collected,
grouped into 23 architecture requirements summaries.

In an iterative process and based on the collected architectural requirements, the technical architecture,
introduced in the first version of this deliverable, was refined. This deliverable gives an overview of the
refined technical architecture. In total, the proposed technical architecture of the TRUSTS platform consists
of 20 components, needed to address the collected requirements. It is summarized in tables how the
components are connected to the functional requirements and the architecture requirement summaries.

To document the aspects of the architecture which are represented in the interplay of multiple components,
design considerations are described, and an explanation is provided of how trust can be enabled between
different participants using the TRUSTS platform. Facing the question of why anyone should trust TRUSTS
makes clear that security- and privacy-by-design is a high-level characteristic that is of strategic importance
and must be addressed by the platform.

The technical architecture provides the technical partners of the project the theoretical and conceptual
foundation of how to instantiate the TRUSTS platform. The architecture is evolved by employing an idea from
agile development, called Minimum Viable Product (MVP) [4, 5]. A current status report of the platform
implementation is given in D3.10 “Status of Platform Implementation II”.

To ensure Gaia-X compliance, the TRUSTS platform will be scalable and extensible by different systems. This
is achieved by providing technical interfaces and allowing participants to extend the platform with their own
components, services, and applications.

The results of this task will also provide input for standardization experts and can be used as a starting point
for standardization efforts with relevant external stakeholder organizations. This is an additional argument
that the work on task 2.4 contributes to the sustainable success of the TRUSTS project.

TRUSTS aims to be a federated platform. By considering the architecture requirements related to the
interoperability of data marketplaces as well as enabling information sharing between semi-autonomous de-
centrally organized applications, the proposed architecture provides the technical basis to achieve this goal.

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 62

If additions or changes to the TRUSTS architecture should become necessary in the third year of the project,
then these changes will be included as part of deliverable D3.11 “Platform Status Report III”. Deliverable
D3.11 is scheduled to be published in the last month of the TRUSTS project duration.

In summary, the designed and iteratively refined technical architecture of the TRUSTS platform attempts to
address all the architectural requirements described in Chapter 3 of this deliverable. The technical
architecture follows all the design principles of DMA, IDS, and Gaia-X that have been listed as architectural
requirements in this deliverable, as well as the architectural requirements formulated by the technical
partners of the project.

D2.7 Architecture design and technical specifications document II

© TRUSTS, 2021 Page | 63

6. References

[1] M. Traub, et al., "Broker and Assessment Technology Specification and Development Road", Data Market
Austria, May 2017.

[2] B. Otto, et al., "Reference Architecture Model Version 3.0", International Data Spaces Association, April
2019.

[3] G. Eggers, et al. "GAIA-X Technical Architecture", Federal Ministry for Economic Affairs and Energy
(BMWi), June 2020. Accessed via: https://www.data-
infrastructure.eu/GAIAX/Redaktion/EN/Publications/gaia-x-technical-
architecture.pdf?__blob=publicationFile&v=5

[4] V. Lenarduzzi, D. Taibi, "MVP Explained: A Systematic Mapping Study on the Definitions of Minimal Viable
Product", Euromicro SEAA, 2016.

[5] J. Münch, et al. "Creating minimum viable products in industry-academia collaborations." International
Conference on Lean Enterprise Software and Systems. Springer, Berlin, Heidelberg, 2013.

