
 This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under the Grant Agreement No 871481.

D2.6 Architecture design and technical
specifications document I

Authors: Benjamin Heitmann

May 2021

Ref. Ares(2021)3581012 - 31/05/2021

© TRUSTS, 2021 Page | 2

D2.6 Architecture design and technical specifications document I

TRUSTS Trusted Secure Data Sharing Space

D2.6 Architecture design and technical
specifications document I

Document Summary Information
Grant Agreement No 871481 Acronym TRUSTS

Full Title TRUSTS Trusted Secure Data Sharing Space

Start Date 01/01/2020 Duration 36 months

Project URL https://trusts-data.eu/

Deliverable D2.6 Architecture design and technical specifications document I

Work Package WP2 - Requirements Elicitation & Specification

Contractual due date 31/05/2021 Actual submission date 31/05/2021

Nature Report Dissemination Level Public

Lead Beneficiary Fraunhofer (FhG)

Responsible Author Benjamin Heitmann

Contributions from FhG, SWC, EMC, G1, FNET, EBOS, LST, REL, FORTH, KNOW, RSA

© TRUSTS, 2021 Page | 3

D2.6 Architecture design and technical specifications document I

Revision history (including peer reviewing & quality control)

Version Issue Date
%

Complete
Changes Contributor(s)

v0.1 01/10/2020 5 Initial Deliverable Structure Benjamin Heitmann (FhG)

v0.2 02/11/2020 20 Collection of requirements for high-level
design principles of DMA, IDS and GAIA-X

Benjamin Heitmann (FhG),
Stefan Gindl (RSA), Victor
Mireles-Chavez (SWC),
Christoph Lange-Bever (FhG)

v0.3 18/12/2020 50 Collection of architecture requirements
from the WP3 tasks

Benjamin Heitmann (FhG),
Steffen Biehs (FhG), Stefan
Gindl (RSA), Victor Mireles-
Chavez (SWC), Nikos
Fourlataras (REL), Dominik
Kowald (KNOW), Ohad
Arnon (EMC), Andreas
Trügler (KNOW)

v0.4 26/03/2021 75 Definition of components for the
architecture

Everybody from v0.3, Gianna
Avgousti (EBOS), Xavi
Olivares (LST)

v0.5 30/04/2021 95 Overview of architecture, additional
explanations, design considerations.

Benjamin Heitmann (FhG),
Stefan Gindl (RSA), Victor
Mireles-Chavez (SWC)

v0.6 05/05/2021 99 Additional explanations for architecture
requirements.

Everybody from v0.3

v1.0 10/05/2021 100 Deliverable ready for peer review Benjamin Heitmann (FhG)

v1.1 19/05/2021 100 Peer review Ioannis Markopoulos (FNET),
Bert Utermark (G1), Victor
Mireles-Chavez (SWC),
Robert David (SWC)

v1.2 27/05/2021 100 Revisions according to peer review Benjamin Heitmann (FhG),
Mehdi Akbari Gurabi (FhG)

v1.3 31/05/2021 100 Final version Benjamin Heitmann (FhG)

© TRUSTS, 2021 Page | 4

D2.6 Architecture design and technical specifications document I

Disclaimer

The content of the publication herein is the sole responsibility of the publishers and it does not necessarily
represent the views expressed by the European Commission or its services.

While the information contained in the documents is believed to be accurate, the authors(s) or any other
participant in the TRUSTS consortium make no warranty of any kind with regard to this material including,
but not limited to the implied warranties of merchantability and fitness for a particular purpose.

Neither the TRUSTS Consortium nor any of its members, their officers, employees or agents shall be
responsible or liable in negligence or otherwise howsoever in respect of any inaccuracy or omission herein.

Without derogating from the generality of the foregoing neither the TRUSTS Consortium nor any of its
members, their officers, employees or agents shall be liable for any direct or indirect or consequential loss or
damage caused by or arising from any information advice or inaccuracy or omission herein.

Copyright message

© TRUSTS, 2020-2022. This deliverable contains original unpublished work except where clearly indicated
otherwise. Acknowledgement of previously published material and of the

work of others has been made through appropriate citation, quotation or both. Reproduction is authorised
provided the source is acknowledged.

© TRUSTS, 2021 Page | 5

D2.6 Architecture design and technical specifications document I

Table of Contents

Executive Summary ... 9
1 Introduction ... 10

1.1 Mapping Projects’ Outputs .. 11
1.2 Deliverable Overview and Report Structure .. 12

2 Technical Requirements for the Architecture ... 13
2.1 Architectural Requirements ... 13

2.1.1 Architecture requirements from alignment with Data Market Austria (DMA) components 14
2.1.2 Architecture requirements from alignment with International Data Spaces components 15
2.1.3 Architecture requirements from future alignment with Gaia-X .. 17
2.1.4 Architecture requirements related to smart contracts ... 19
2.1.5 Architecture requirements related to the interoperability of data marketplaces 20
2.1.6 Architecture requirements related to data governance .. 21
2.1.7 Architecture requirements related to platform development and integration 24
2.1.8 Architecture requirements related to brokerage and profiles for users and corporates 26
2.1.9 Architecture requirements related to privacy enhancing technologies .. 27
2.1.10 Architecture requirements related to anonymization and de-anonymization 30
2.1.11 Architecture requirements following from the usage of Comprehensive Knowledge Archive
Network (CKAN) software ... 32

2.2 Summary of Architecture Requirements ... 33
3 Technical architecture of the TRUSTS platform .. 37

3.1 Overview of the technical architecture .. 37
3.1.1 Types of nodes ... 39
3.1.2 Data sets / services / applications ... 40
3.1.3 Connections within the TRUSTS architecture .. 41
3.1.4 Interoperability with External Data Markets and EOSC Initiatives .. 42

3.2 Components of the architecture .. 43
3.2.1 Summary of connections between functional requirements and components 55
3.2.2 Summary of connections between architecture requirements and components 58

4 Design considerations for the architecture of the TRUSTS platform .. 60
4.1 Functional requirements which are addressed by the architecture as a whole 60

4.1.1 Functional requirements coming from the preparation for the use case trials 61
4.1.2 Handling of portable applications on the TRUSTS Platform .. 62
4.1.3 Handling of services on the TRUSTS platform ... 63

4.2 The role of the components in enabling trust between participants .. 64
4.3 Planning for the evolution of the architecture with agile methods ... 65

5 Conclusions and Next Actions ... 67
6 References ... 68
7 Annex: Smart Contract FR revision .. 69

© TRUSTS, 2021 Page | 6

D2.6 Architecture design and technical specifications document I

List of Figures
Figure 1: GAIA-X high-level architecture [3] .. 18
Figure 2: Illustration for AR 4.1: Computation using distributed and controlled execution environments 28
Figure 3: Illustration for AR4.2: Machine Learning using distributed and privacy preserving technologies 28
Figure 4: Illustration for AR4.3: Option of execution of distributed and privacy preserving technologies on
servers provided by the TRUSTS operator .. 29
Figure 5: Illustration for AR4.4: Option of execution of distributed and privacy preserving technologies on
servers provided by a TRUSTS participant themselves ... 29
Figure 6: Architecture requirements related to anonymisation and de-anonymisation 31
Figure 7: Diagram of the technical architecture .. 38
Figure 8: Overview of networks involved in the TRUSTS platform .. 39

© TRUSTS, 2021 Page | 7

D2.6 Architecture design and technical specifications document I

List of Tables
Table 1: Adherence to TRUSTS GA Deliverable & Tasks Descriptions ... 11
Table 2: Summary of Architecture Requirements ... 33
Table 3: Summary of connections between functional requirements and components 55
Table 4: Summary of connections between architecture requirements and components 58

© TRUSTS, 2021 Page | 8

D2.6 Architecture design and technical specifications document I

Glossary of terms and abbreviations used

Abbreviation / Term Description

GA Grant Agreement

HTTP Hyper Text Transfer Protocol

FR Functional Requirement

AR Architectural Requirement

ARS Architectural Requirement Summary

ID Identifier

IDS International Data Spaces, see [2]

DMA Data Market Austria, see [1]

DAPS Dynamic Attribute Provisioning System

ACME Automated Certificate Management Environment

UC Use Case

CKAN Comprehensive Knowledge Archive Network

API(s) Application Programming Interface

MVP Minimum Viable Product, see [4,5]

PII Personally Identifiable Information

DM Data Marketplace

© TRUSTS, 2021 Page | 9

D2.6 Architecture design and technical specifications document I

Executive Summary

This deliverable reports the status of the architecture design and the collection of technical specifications. The

technical architecture of the TRUSTS platform is based on three pillars: (1) the vision for the architecture as a

consensus of the technical experts in the project; (2) the functional requirements collected from experts inside and

outside of the project; and (3) the architecture requirements collected from the project participants which are

working on tasks related to the implementation of the platform.

The TRUSTS platform builds on the experiences and best practices from two previous initiatives for supporting data

markets. These are the Data Market Austria (DMA) [1] and the International Data Spaces (IDS) [2]. Both initiatives

have strongly influenced the architecture design of the TRUSTS platform. On a conceptual level, the roles of

participants and the structuring of the federated architecture into several nodes are based on a hybrid of the related

concepts from both DMA and IDS. On a technical level, the architecture design prescribes the reuse of infrastructure

from both DMA and IDS for the implementation of the platform towards a true hybridized implementation. Taken

together, the hybrid architecture will result in a platform implementation which aims to combine the best of both

previous initiatives while mitigating strategically important weaknesses.

Towards specifying the architecture design and the technical specifications in this deliverable, the following steps

are described in this deliverable: First, the architecture requirements are collected from the project participants

which are working on tasks related to the implementation of the platform. Then the architectural requirements and

functional requirements are summarized. Then software components for the architecture are specified in order to

address the collected functional and architectural requirements. Taken together, these components form the

technical architecture of the TRUSTS platform. In addition, we describe the design considerations of the architecture

to document the aspects of the architecture which are represented in the interplay of multiple components, instead

of being implemented in a single component.

The resulting technical architecture follows all the design principles of the DMA, IDS and GAIA-X, which we have

listed as architecture requirements in this deliverable. Of specific strategic significance are the following high-level

characteristics of the architecture:

• Security- and privacy-by-design, in order to provide a trusted and secure platform for data markets which

empowers consumers with measures to protect their privacy, while simultaneously enabling the emerging

data economy.

• Innovative beyond the state-of-the-art, as not just data sets can be traded, but in addition access to services

and applications can be monetized while maintaining security and privacy of all involved participants.

• Enabling federation, distribution and decentralization through an architecture which emphasizes distributed

operation of infrastructure components, decentralized grouping of participants into federations, and

communication between decentralized instances of security related infrastructure.

• Scalability and extensibility, by providing technical interfaces to allow performance critical infrastructure to

be replicated horizontally, and to allow participants to extend the platform with their own components,

services and applications.

• Future proof, as the technical architecture already in principle is compatible will all high-level architecture

principles of GAIA-X. GAIA-X [3] is a project for the development of an efficient and competitive, secure and

trustworthy federation of data infrastructure and service providers for Europe.

Taken together, the strong foundation of the architecture of the TRUSTS platform which is represented by the IDS

and DMA initiatives, and the strategic significance of the high-level characteristics of the platform, will enable the

TRUSTS platform to support new forms of innovation and the development of new business models. To exploit the

technical architecture, the experts for business models and innovation in the project will collect business

requirements, which will shape the second version of this deliverable.

© TRUSTS, 2021 Page | 10

D2.6 Architecture design and technical specifications document I

1 Introduction

The architecture design of the TRUSTS platform represents the blueprint for the technical results of the TRUSTS
project. As such, it also represents the foundation for instances of the TRUSTS platform which will be provided
by one or more TRUSTS operators after the duration of the project. The technical specifications provide the
details which are required by technical experts in order to instantiate the platform infrastructure and built on
top of it or to extend it with their own components, services and applications.

The work in this deliverable is the result of a collaborative process between all technical experts in the project.
The architecture represents the conceptual foundation for the implementation of the TRUSTS platform, and
therefore reaching a consensus on the architecture enables all project partners with a technical view to agree
on the most important abstract decisions, before realizing them in their implementation. In addition, the
architecture also allows the project partners with a non-technical view to contribute with cross-cutting
requirements of strategic importance, such as having future proof characteristics.

This deliverable summarizes the efforts accomplished so far and outlines insights gained throughout the
process as well as conclusions from these insights. Of particular importance are the documented decisions for
challenges of strategic importance, which have an impact on the project beyond the purely technical aspects of
the platform:

• How can the technical architecture be designed as an extension of both the Data Market Austria (DMA)
[1] and the International Data Spaces (IDS) [2] initiatives? This is required in order to enable the maximum

uptake of the existing experiences and best practices from these two initiatives, which represent the state-

of-the-art for providing support for the development of data markets at the start of the project.
• In addition, can the technical architecture be designed to be future proof with regards to the

emerging data economy in Europe, by being compatible with the GAIA-X [3] initiative? We expect
GAIA-X to set important impulses for the data economy in Europa by e.g., communicating with
important groups of stakeholders to set the agenda and by setting standards for technical and
organizational issues, such as certification.

• The technical specifications describe the details for instantiating the technical infrastructure of the
TRUSTS platform. How can infrastructure components from both DMA and IDS be used together? Are
there parts of the platform, such as communication between participants, for which only the approach
of one legacy initiative has to be selected? Are there areas for which components can be freely mixed
and matched?

• The TRUSTS platform aims to enable trust between the participants of a data marketplace, which
might not have done any form of commerce before interacting on the platform. Which role is the
technical infrastructure playing for this? Given the fact that TRUSTS will employ novel approaches to
enable this, how can this be anchored in the design of the architecture?

• How can the design of the architecture enable new forms of assets to be traded and monetized in a
data marketplace? Is there a way to go beyond trading of data sets, and enable for instance the
monetization of access to services and apps as part of a data marketplace?

• Given the importance of the technical architecture for the implementation of the TRUSTS platform,
which strategy should be used to enable the evolution of the architecture during the project duration?

© TRUSTS, 2021 Page | 11

D2.6 Architecture design and technical specifications document I

1.1 Mapping Projects’ Outputs

The purpose of this section is to map TRUSTS Grant Agreement commitments, both within the formal
Deliverable and Task description, against the project’s respective outputs and work performed.

Table 1: Adherence to TRUSTS GA Deliverable & Tasks Descriptions

TRUSTS Task Respective Document
Chapters(s)

Justification

T2.4
Architecture
design and
technical
specifications

Based on the market analysis and
requirements elicitation outcomes that are
performed in T2.1 and 2.2, as well as the
legal and ethical frameworks and
requirements generated in T6.2, this task
deals with the specification of an
architectural design of the TRUSTS
platform. While existing specifications such
as the Reference Architecture Model
(RAM) of the Industrial Data Space
(published by the IDSA, co-edited with FhG)
and design documents of the Data Market
Austria, will serve as a basis, the additional
contributions of this Tasks are to (i) align
the collected requirements with these
specifications, (ii) identify areas that need
to be improved and adapted, and (iii)
develop and suggest concrete requests for
changes and adaptations of the RAM. The
Task involves IDSA as well as key
contributors to the DMA platform as the
main stakeholders of the specifications,
leveraging their established processes
(e.g., working groups, technical advisory
board meetings) to make sure that the
proposed changes are incorporated
efficiently with wide support from the
industry. The task not only focuses on the
architectural level but also on making
decisions about technologies and methods
to actually implement the architecture.
This encompasses the design of data
structures, message formats, APIs and
protocols, but also the definition of
procedures, such as the deployment of new
component instances and their integration
into the running TRUSTS platform.

Section 2

Section 3

Section 4

Requirements for the
architecture are
derived from: (1) IDS
RAM and DMA as the
foundation of the
TRUSTS platform; (2)
all technical experts
in the project, who
are working on tasks
related to
implementing the
platform; (3) future
proof compatibility
with GAIA-X.

The technical
architecture and its
components are
described. This
includes the
specification of
technical details for
the interplay of the
components.

Any additional design
considerations and
decisions for the
technical
architecture are
described.

TRUSTS Deliverable

© TRUSTS, 2021 Page | 12

D2.6 Architecture design and technical specifications document I

D2.6 Architecture design and technical specifications document I

First version of the periodically updated report on the TRUSTS platform specification that is based on the
results communicated in D2.1 and D2.2 and D2.3. The document describes the architectural decisions taken
and their rationale. Furthermore, D2.6 will in addition report on the application of the testing and
benchmarking framework provided by T2.3.

1.2 Deliverable Overview and Report Structure

This deliverable summarizes the activities in task 2.4. “Architecture design and technical specifications” and is
the first of two versions of this deliverable. It documents the blueprint for the technical results of the TRUSTS
project. The technical specifications provide the details which are required by technical experts in order to
instantiate the platform infrastructure and built on top of it or to extend it with their own components,
services and applications.

The deliverable is structured into the following sections:

• Technical requirements for the architecture: This section collects the requirements for the
architecture from two different groups of stakeholders within the project. The first set of requirements
are the functional requirements (FRs). They were collected mainly from the non-technical participants
of the project, and are collected in deliverable D2.2 “Industry specific requirements analysis, definition
of the vertical E2E data marketplace functionality and use cases definition I”. The second set of
requirements are the architectural requirements (ARs). They were collected from the technical
participants of the project, and are grouped by the different areas of concern for the TRUSTS
architecture.

• Technical architecture of the TRUSTS platform: Based on the architectural requirements, we describe
a software architecture for the TRUSTS platform. We give an overview of the architecture, then we
specify which software components are needed in order to address the collected functional and
architectural requirements. We also provide tables which list how the components address the
identified requirements for the architecture.

• Design considerations for the architecture of the TRUSTS platform: We describe the design
considerations of the architecture to document the aspects of the architecture which are represented
in the interplay of multiple components, instead of being implemented in a single component.

• Conclusions and next actions: We conclude the deliverable by listing the project results which are
described in this deliverable, and giving an overview of the next actions towards the second version of
this deliverable.

© TRUSTS, 2021 Page | 13

D2.6 Architecture design and technical specifications document I

2 Technical Requirements for the Architecture

The architecture of the TRUSTS platform has to accommodate the requirements and priorities of many
different stakeholders. In order to accomplish this, requirements have been collected from two different
groups of stakeholders within the project.

The first set of requirements are the functional requirements (FRs). They were collected mainly from the non-
technical participants of the project, and are collected in deliverable D2.2 “Industry specific requirements
analysis, definition of the vertical E2E data marketplace functionality and use cases definition I”. While this
deliverable will reference the functional requirements from deliverable D2.2, they will not be included in this
deliverable. Further, the functional requirements will be updated and revised in the second version of the same
deliverable, which is identified as D2.3. These revisions will take into account the feedback and experiences of
all project partners in the first half of the TRUSTS project. Towards this goal, several suggestions for revisions of
functional requirements are included in the annex of this document.

The second set of requirements are the architectural requirements (ARs). They were collected from the
technical participants of the project, and are grouped by the different areas of concern for the TRUSTS
architecture. These areas of concern are as follows:

● Architecture requirements from alignment with Data Market Austria (DMA) components
● Architecture requirements from alignment with International Data Spaces (IDS) components
● Architecture requirements from future alignment with Gaia-X
● Architecture requirements related to smart contracts
● Architecture requirements related to interoperability of data marketplaces
● Architecture requirements related to data governance
● Architecture requirements related to platform development and integration
● Architecture requirements related to brokerage and profiles for users and corporates
● Architecture requirements related to privacy enhancing technologies
● Architecture requirements related to anonymization and de-anonymization
● Architecture requirements following from the usage of Comprehensive Knowledge Archive Network

(CKAN) software

In this section, we first list the architecture requirements for the different areas of concern for the TRUSTS
platform. This is followed by a summary of the architectural requirements.

2.1 Architectural Requirements

In addition to the functional requirements (FRs), which were mainly collected by the non-technical participants
of the project, the TRUSTS architecture is based on architectural requirements (ARs). They were collected from
the technical participants of the project, and are grouped by the different areas of concern with regards to the
architecture.

For each area of concern, we list the requirements stemming from that area of concern. For each requirement
we provide an ID, a summarizing title, and a description.

© TRUSTS, 2021 Page | 14

D2.6 Architecture design and technical specifications document I

2.1.1 Architecture requirements from alignment with Data Market Austria (DMA) components

One of the two approaches for supporting data markets on which the TRUSTS platform builds, is the Data

Market Austria (DMA) data market [1]. The DMA, which started from a flagship project founded by the Austrian

Federal Ministry of Transportation, Innovation and Technology, was envisioned as a single point of entry to a

federated network of data and data-service providers. It aimed at providing a user-friendly portal through

which individuals interested in consuming datasets and data-services can see a list of available datasets, and

then contact the respective provider to gain access to the infrastructure that hosts them. The DMA project

finished in August 2019.

The DMA was envisioned as a distributed set of nodes hosting the different assets, and a central node hosting

the metadata about the assets and other support services. Each node consists of a set of containers serving a

series of core components, which include access control, metadata harvesting, asset ingestion UI and an

Etherium blockchain node. The central node additionally executes several metadata management pipelines,

along with a user authentication and access control service. Together, these services and an orchestrated

exchange of information (e.g. ip-addresses and public keys for verifying authentication tokens) realize the

federation of the DMA.

The DMA model of a distributed set of independent nodes and an additional central node has been inherited in

the TRUSTS platform architecture presented in this document. It will be further enriched by the security-

enhancing technologies that have been developed by the IDSA, as well as a series of components deployed

adhoc for the TRUSTS platform. Three important architectural commonalities exist between the two projects.

First, the notion of independent nodes that host the assets offered by the organization. Second, the notion of a

centralized metadata catalogue that, along with a set of controlled vocabularies, constitutes a knowledge

graph on which applications such as search and recommendation are powered. Third, the idea of a set of

components being developed and distributed to different organizations so that each organisation can set up

their own participating node by running instances of the provided components.

Likewise, several outstanding differences can be identified between the two, which are introduced by the

usage of software components from the International Data Spaces (IDS) [2]. The IDS will be described in the

next section. On the one hand, the communication protocol between the different nodes is replaced in TRUSTS

by the IDSCPv2 protocol, which incorporates an additional layer of security and trust by the use of

cryptographic certificates and third party attestation. On the other, TRUSTS introduces the notion of a portable

application, which in turn necessitates a more adaptable routing mechanism within each node. In the DMA,

routing is configured in a reverse proxy configuration which only requires alterations when a new core

component is installed. This contrasts with the TRUSTS routing mechanism which allows dynamically for

services to appear, disappear or change names within a node. Finally, the TRUSTS platform envisions a

federated user information system, distributed across all the nodes.

© TRUSTS, 2021 Page | 15

D2.6 Architecture design and technical specifications document I

Since some of the DMA components are repurposed in the TRUST platform, along with many of the design

principles and user scenarios, the following architecture requirements are inherited by the TRUSTS architecture

from the DMA project:

Requirements for reuse of DMA components and concepts

AR 3.D.1

Ability to operate as a distributed set of nodes.

The different providers and consumers of assets must remain capable of operating their own
infrastructure in order to maintain data sovereignty. This infrastructure should be connected
in a well-defined and easy to set-up manner in order to realize the business models.

AR 3.D.2

Asset metadata distribution and aggregation.

Organizations should be able to offer existing assets on the platform. This requires
mechanisms to ingest, map and distribute metadata about assets in a way that is searchable
and actionable by the other participants of the platform.

AR 3.DMA.3

Components must be easily deployable and connected.

The different nodes involved in the platform will each deploy a set of services. These can be
developed or packaged by the platform operator, and they should be easily installable by
every participating organization.

AR 3.DMA.4

Node infrastructure metadata accessible to all components in a node.

All components running in a node must have access to a single and up-to-date source of
basic metadata about the node, such as name, identification numbers, as well as metadata
about other components it interacts with.

AR 3.DMA.5

Single source of truth for controlled vocabularies.

In order to adequately manage metadata coming from different organizations, some of
which might have been created with distinct purposes in hand, it is necessary to have a set
of controlled vocabularies that are centrally maintained and which can be used in mapping
of metadata schemas and items.

2.1.2 Architecture requirements from alignment with International Data Spaces components

The second approach for supporting data markets on which the TRUSTS platform builds, is the International
Data Spaces (IDS) [2], which provides a set of infrastructure components on which data markets can be built.
The IDS is a decentral software architecture for exchanging data in a sovereign, secure and interoperable way.
Data owners’ sovereignty over their data is achieved by certifying the actors that participate in a data space as
well as the technical components they operate to exchange data, and by technically controlling the usage of
data on the data consumer’s side according to metadata by which the data owner described data usage
policies.

The IDS Reference Architecture Model is defined by the IDS Association (IDSA) and its 100+ member
organizations. In a minimal IDS, participants exchange data peer-to-peer. They do so by operating a

© TRUSTS, 2021 Page | 16

D2.6 Architecture design and technical specifications document I

standardized communication interface called Connector. A meaningful data space that allows for multiple
participants that neither know nor trust each other initially and that is open for additional participants to join
requires further infrastructure called essential services1. For convenience, further non-essential services make
sense in a data space. The following table lists them all:

Service What is it? Essential?

Certification body Governance body empowered to grant IDSA certification for
components and participants

Yes

Certification authority Authority that is in charge of the certification to make sure
that only compliant organizations are granted access to the
trusted business ecosystem

Yes

Dynamic provisioning service Management of certifications and metadata for all
components and participants

Yes

Participant information system Registry of certified participants that is accessible to all
participants

Yes

Dynamic trust management Governance body empowered to enforce basic security rules
of IDS as a whole

Yes

IDS (metadata) brokers IDS connectors will register descriptions of data endpoints
with IDS brokers. This allows data consumers to find the data
they need.

Yes

App store Outlets providing data apps that can be deployed in IDS
Connectors to execute tasks like transformation, aggregation
or analytics on the data. Provided by IDS members, certified
under IDS standards.

No

Vocabulary provider Offer “vocabularies” such as ontologies, reference data
models and metadata elements, which can be used to
annotate and describe datasets.

No

Clearing houses These intermediaries will provide clearing and settlement
services for financial and data exchange transactions in the
IDS.

No

1 https://internationaldataspaces.org/adopt/essential-services/

© TRUSTS, 2021 Page | 17

D2.6 Architecture design and technical specifications document I

We imagine the TRUSTS data space to be an IDS-compatible data space with at least the Essential Services. The
technical services for dynamic provisioning, participant information and (metadata) brokerage should be put
into operation as soon as possible, and the participants required for demonstrating the TRUSTS use case should
be equipped with IDS Connectors. At the end of the project, organizations should have been identified that
take care of certification and trust management. Based on this, the following architecture requirements are
inherited by the TRUSTS architecture from the IDS:

Requirements from future alignment with IDS

AR 3.I.1
Essential services (technical):

Services for dynamic provisioning, participant information and (metadata) brokerage shall be put
into operation.

AR 3.I.2

IDS Connectors:

All participants required for demonstrating the TRUSTS use cases shall be equipped with IDS
Connectors and should be able to expose their data offerings through these connectors’
interfaces, including self-describing metadata in terms of the IDS Information Model.

AR 3.I.3

Essential services (operational):

Organizations that provide the essential services of certification (i.e., certification body and
certification authority) shall be identified. A body in charge of dynamic trust management shall
be established.

2.1.3 Architecture requirements from future alignment with Gaia-X

GAIA-X [3] is a project for the development of an efficient and competitive, secure and trustworthy federation
of data infrastructure and service providers for Europe, which is supported by representatives of business,
science and administration from European countries.

GAIA-X follows the principles of openness and transparency of standards, interoperability, federation, i.e.,
decentral distribution, as well as authenticity and trust (Technical Architecture [3, §1.2]).

These principles are translated into the following technical guidelines (Technical Architecture [3, §1.3]):

● Security-by-design
● Privacy-by-design
● Enabling federation, distribution, and decentralisation
● Usage-friendliness and simplicity
● Machine-processability
● Semantic representation

The GAIA-X ecosystem as a whole is structured into a Data Ecosystem and the Infrastructure Ecosystem
(Technical Architecture [3, §1.4]). The Data Ecosystem enables Data Spaces as envisioned by the European Data
Strategy, where not only data is exchanged, but also advanced smart services are provided. The Infrastructure
Ecosystem comprises building blocks from hardware nodes to application containers, where data is stored and

© TRUSTS, 2021 Page | 18

D2.6 Architecture design and technical specifications document I

services are executed, as well as networks, via which data is transmitted. Infrastructure itself may be provided
as a service.

Figure 1: GAIA-X high-level architecture [3]

The Federation Services connect the Data and Infrastructure Ecosystems with concrete functionality that is in
line with the architecture principles and technical guidelines. The Federation Services are grouped into the
following domains, which are by no means specific to GAIA-X, but generally apply to data and service
ecosystems based on cloud technology:

● Identity and Trust mechanisms, comprising federated identity management, trust management, and
federated access.

● A Federated Catalogue, comprising offerings of assets (i.e., data and services) that describe themselves
in a FAIR (findable, accessible, interoperable, reusable) way.

● Sovereign Data Exchange, ensured by policies, usage control, and security concepts.
● Compliance in a sense of organization and governance (defining the rights and obligations between

service providers and consumers, and the process of onboarding participants and their assets into the
ecosystem), but also supported technically via certification and continuous monitoring.

In being compatible with the Federation Services, providers and their assets can fulfil the architectural
principles as follows:

Requirements from future alignment with Gaia-X

AR 3.X.1
Security by design:

Security considerations are addressed by secure and sovereign data exchange, as well as

© TRUSTS, 2021 Page | 19

D2.6 Architecture design and technical specifications document I

compliance concerns.

AR 3.X.2
Privacy by design:

Identity and Trust provide the foundation for privacy. Compliance with privacy requirements is
further ensured by the mechanisms for sovereign data exchange.

AR 3.X.3

Enabling federation, distribution, and decentralisation:

The Federation Services themselves are designed to operate in a federated, distributed, and
decentralised manner. The Federated Catalogue encourages providers to offer services on all
layers of abstraction, from infrastructure as a service to data as a service. Their machine-
processable and semantic Self-descriptions enable automated deployment.

AR 3.X.4
Usage-friendliness and simplicity:

APIs, which can be found via the Federated Catalogue), enable the construction of human user
interfaces.

AR 3.X.5

Machine-processability:

This is ensured by Self-descriptions of assets in the Federated Catalogue, which comprise usage
policies and may point to APIs. APIs further enable automation.

AR 3.X.6
Semantic representation:

Self-descriptions in the Federated Catalogue make assets FAIR (Findable, Accessible,
Interoperable, Reusable).

2.1.4 Architecture requirements related to smart contracts

Smart contracts are one of the areas of concern for the TRUSTS architecture. The work in relation to this
concern is being led by Fraunhofer ISST. The main goal with regards to this concern is to develop the necessary
concepts for using smart contracts in the context of the European Data Market delivered by the TRUSTS
project. This includes in particular the technical foundations for ensuring the integrity and authenticity of such
contracts as well as the analysis of the legal challenges brought about by smart contracts, such as issues of
validity, enforceability, and interpretation. Related to this, the technical challenges and the legal issues
regarding the fact that smart contracts are written in executable code instead of natural language, will be
examined by the partners with legal expertise in the project.

The result of this work is a comprehensive concept document related to all the aspects of the above paragraph.
Additionally, a demonstrator is being developed by Dell. The demonstrator consists of a blockchain instance
which is using the Hyperledger Fabric technology. Thus it is possible to execute smart contracts in this instance.
The demonstrator will also connect to external payment systems. The demonstrator is logged as architecture
component C24 - “smart contract executor”.

Based on the project work of the partners with expertise related to smart contracts, the following
requirements for the architecture of the TRUSTS platform are specified. In addition, several suggestions for
revisions of functional requirements related to smart contracts are included in the annex of this document.

© TRUSTS, 2021 Page | 20

D2.6 Architecture design and technical specifications document I

T3.2 Smart Contracts

AR 3.2.1

Smart contracts based on data sharing policies:

It should be possible to create smart contracts based on policies for data sharing. The policies
define how data can be handled by a data consumer. When a data consumer accepts a policy, a
contract is created between the data provider and the data consumer based on the accepted
policy. From this contract, a transaction will be created by one of the parties of this contract.
The transaction will be sent to the blockchain instance. Before this transaction will be stored
into a new block, it triggers a smart contract which is related to the contract and proves it.

AR 3.2.2
Logging of all transactions:

Every transaction between two participants should be logged. It should be possible to define
which information is logged for which kind of transaction.

2.1.5 Architecture requirements related to the interoperability of data marketplaces

The interoperability between TRUSTS and other data marketplaces is one of the concerns of the TRUSTS
platform. This includes the definition and implementation of interfaces to ensure interoperability with other
industrial data marketplaces as well as with EOSC initiatives. In addition, this is related to analysing and
examining existing standards and interfaces with regards to their suitability for interoperability. This will
ultimately result in the development of an interoperability solution, which provides the necessary technical
functionality to interoperate with a selected set of existing data marketplaces and EOSC initiatives. The
interoperability solution will help to include external resources in TRUSTS. The interoperability solution is
envisaged as a client-server architecture consisting of a data exchange component residing on the premises of
TRUSTS as well as another component residing on the premises of an external data marketplace or EOSC
initiative, respectively.

The successful implementation of the interoperability solutions requires a set of components. The architecture
is based on a careful evaluation of both existing data marketplaces as well as EOSC initiatives. This involved the
analysis of technical and operational features such as the provided resources (e.g. data assets or search
functionality) or available APIs. It involves a metadata schema for data assets based on existing schemas such
as the IDS Metadata Model, two components establishing metadata and/or data transfer between TRUSTS and
external data marketplaces and EOSC initiatives, a registry of data marketplaces containing up-to-date
information about external data marketplaces/EOSC initiatives, as well as a graphical user interface for the
interoperability solution. The resulting architecture requirements are as follows:

Architecture requirements related to data marketplace interoperability

AR 3.3.1
Metadata schema for data assets:

A documented metadata schema building on top of existing schemas, such as the IDS Metadata
Model for describing resources and datasets, but extended to data assets.

AR 3.3.2

Data exchange client component:

A module that can be integrated into a common data management platform which will enable
the exchange of information about data products across a federated data markets network. An
external data market should be able to integrate this software library with ease and be able to

© TRUSTS, 2021 Page | 21

D2.6 Architecture design and technical specifications document I

expose information about its data products to TRUSTS as a result. The library should also serve
as a basis for connecting TRUSTS with EOSC.

AR 3.3.3

Data exchange TRUSTS component:

This component resides on the side of TRUSTS and communicates with the Data Exchange Client
Component. It receives the input from the Data Exchange Client Component and converts it into
the format required by TRUSTS, subsequently storing the received data in the TRUSTS data
storages.

AR 3.3.4

Registry of data markets:

This component will be essential for having always up-to-date information about external data
markets (metadata schemas, APIs, platforms) currently used in the sector. The information in
the registry will assist in identifying the external parties most suitable for the testing/piloting of
the TRUSTS developed interoperability solution.

AR 3.3.5

Administrative interface:

There should be an administrative interface for the TRUSTS operator that enables the operator
to add, update or remove external data markets supporting the developed interoperability
solution from the TRUSTS platform. This will be the mechanism by which the TRUSTS operator
decides which data markets to connect to. The process can be facilitated by automatically
linking data markets listed in the Registry of data markets.

2.1.6 Architecture requirements related to data governance

The TRUSTS platform will enable exchange of assets (services, applications, datasets) between participants.
These assets, however, will remain in the hands of their respective owners and only be transferred to those
who purchase them in accordance to contractual terms. To enable said exchange, the TRUSTS operator will
collect metadata about the assets, their provenance, their location and their permitted usage and
commercialization options.

Towards this goal, a set of ontologies and controlled vocabularies for expressing such metadata have been
identified, as well as schemata and exchange protocols for their exchange and storage. A specification for using
these ontologies, vocabularies, schemata and exchange protocols together will be documented in detail in in
deliverable D3.7. This specification will be utilized by almost all components of the TRUSTS platform in order to
retrieve and store metadata about the assets being traded, the organization of the platform nodes, and the
organization of components within nodes, among others. The semantics of this metadata will be explicitly
described in a combination of machine readable formats (RDF) and human readable documentation, which will
in turn guide i) the implementation of software artifacts specialized in metadata processing, as well as ii) the
interpretation that other components have of said metadata and how they translate these into actions.

The exchange and use of metadata necessitates a combination of solid schemata, ontologies, controlled
vocabularies, and identifier practices, as well as an underlying technical infrastructure for its processing and
storage. It is this technical infrastructure which induces a set of architectural requirements described below.

A subset of these requirements aim at solidifying the joint evolution of the architecture and metadata layer
that has taken place so far in the project. For example, the metadata definition envisions each asset to be

© TRUSTS, 2021 Page | 22

D2.6 Architecture design and technical specifications document I

associated with a specific organization, and provisions have been made to describe from which of the many
components that said organization operates an asset is served. This organization of metadata is thus
compatible with the notion that each participant in the TRUSTS platform be the operator of a computing
environment (AR 3.4.1) in which several software components are executed (AR 3.4.2). In addition, there exist
mechanisms for locating an asset among these components given a metadata description (AR 3.4.4, AR 3.4.8).
Other requirements aim at ensuring the technical means for the creation, storage and maintenance of
metadata. For example, user interfaces should produce metadata whenever an asset is onboarded (AR 3.4.12),
and an organization’s existing metadata should be transformed to conform to the TRUSTS metadata schema
(AR 3.4.9), having always in mind the existing repertoire of, for example, topics and keywords with which to
classify an asset (AR 3.4.11).

Architecture requirements related to data governance, metadata, lineage and semantic layers

AR 3.4.1

Every TRUSTS platform instance is a distributed set of nodes:

TRUSTS should be a distributed set of nodes. Each node can run in its own infrastructure, and
its own network. Connection between nodes should be done through the IDSCP, or through
other protocols that allow for certified communications and identity verification. Nodes must
expose a self-description according to the IDS information model.

AR 3.4.2

Each node runs software components:

Each node runs a series of software components, which can be installed into the node using
docker containers, and which can communicate among each other. A software component can
be certified by a certification authority.

AR 3.4.3

Each node runs an instance of the trusted connector:

Each node must run a software component that controls communication with other nodes.
This component, referred to as Connector can be an instance of, e.g. IDS Trusted Connector or
any other connector compliant with the IDSCP and compatible with the IDS Trusted Connector.
The Connector should be able to route messages between other nodes and other software
components within the node. It must expose a series of ports through which other connectors
can send or request data.

AR 3.4.4

Each node has an internal directory of running software components:

Each node must be equipped with a machine readable internal directory of the software
components running inside of it, their type, address and, if available, connector port that they
respond to. This list must be the source of configuration for internal routing between
connector and software components.

AR 3.4.5

A node can internally be a distributed node:

Each TRUSTS node can, itself, enclose a distributed system (e.g. multiprocessing cluster)
provided that:

1. components of this system communicate only among themselves,
2. communication to other software or hardware components must be done through the

Connector.
3. The above rules are enforced both in configuration of the distributed system itself, as

© TRUSTS, 2021 Page | 23

D2.6 Architecture design and technical specifications document I

well as through network configuration.

Nodes which implement these three requirements are called Distributed Nodes.

AR 3.4.6

The TRUSTS platform has at least one Central Node:

At least one of the nodes of TRUSTS, called Central Node, must maintain a centralized
metadata store that includes connection details (IP addresses, ports) of every other node. It
must receive this information in accordance with the IDS information model, check for its
authenticity and keep it up to date. This node must also expose, through a Connector interface,
updates to this metadata that can be leveraged by other components, described below.
Furthermore, it must provide to other nodes information about the TRUSTS ecosystem that will
allow for the different nodes to interoperate, in particular: location, identity and public keys of
all nodes registered with it, as well as information (e.g. public keys) that can aid in validating
signatures by specific services, such as the Authorization service or the Vocabulary
Management service.

AR 3.4.7

A node must be able to run apps:

Nodes must be capable of running arbitrary software components (applications) in a
sandboxed environment, that is, having only connections to other components as configured
by the node administrator, and to the outside world (including other nodes) through the
Connector. For example, is should be possible to install in a node a Mapping Component app
that, after configuration, can i) go through a set of metadata files in the node, ii) consult
another node for some entity extraction, and iii) transform each metadata file into another
format and iv) send this metadata onto the Broker Node.

AR 3.4.8

Managing of assets in a node:

Nodes can run one or more apps called Asset Servers which must i) receive requests for assets
(data / service access) coming to the node in the form of an AssetID, a requester ID and an
authorization note, ii) check the validity of the authorization, iii) answer the request with the
asset. These asset servers must specify the method for accessing their assets (e.g. files, REST
endpoints, SCP connections), and make this metadata available through a REST call.

AR 3.4.9

Harvesting of metadata in a node:

Nodes can run one or more apps called Metadata Harvesters which collect metadata about the
node’s assets, which can be in a variety of storage mechanisms (e.g. files, tables, OAI-PMH
endpoints). If necessary, these metadata can be sent to an external node for mapping and then
stored in this new mapped form. The metadata can be sent, through the connector, in the form
of IDS messages to the central node and must also include information about the method for
accessing assets, which can be retrieved from the corresponding asset server.

AR 3.4.10

Recommendations in a node:

Nodes can run an application for Recommendation that will do analysis on the broker nodes’
metadata repository. These nodes need to be authorized by each broker node to do this
analysis.

AR 3.4.11
Managing vocabularies in a TRUSTS ecosystem:

At least one node in the TRUSTS ecosystem must run application for centralized Vocabulary

© TRUSTS, 2021 Page | 24

D2.6 Architecture design and technical specifications document I

Management that is accessible to other nodes and provides i) a SPARQL interface for
vocabularies used by the TRUSTS ecosystem, and ii) linked data descriptions of these
vocabularies (using content negotiation). Nodes running this service must also run a Metadata
Mapping service that, after case-per-case configuration, can map metadata in an existing JSON
or XML schema into the IDS information model schema, serialized in RDF/Turtle.

AR 3.4.12

User interfaces in a TRUSTS ecosystem:

At least one of the nodes of TRUSTS, called a Portal Node, must exhibit a set of user interfaces
for searching the assets stored in a set of Broker nodes, generating configuration files for
metadata mapping, as well as buying available assets. These UIs must integrate with an
authorization service running also in this node.

2.1.7 Architecture requirements related to platform development and integration

In order to develop the TRUSTS platform and integrate existing software components into the platform, the
architecture of the TRUSTS platform needs to accommodate the reuse of existing software components. These
components are provided by the International Data Spaces (IDS) [2], Data Market Austria (DMA) [3] and
Comprehensive Knowledge Archive Network (CKAN) software. In addition, newly developed components
provided by the partners of TRUSTS also need to be integrated into the TRUSTS platform. The new platform
should be easy deployable to widely used operating systems and cover as many possible potential participants
in order to allow them to connect new or existing information systems to the TRUSTS platform. The platform
should provide access to the TRUSTS ecosystem in a secure way for both corporate and individual users, as long
as they satisfy the requirements for participation.

Towards this goal, an implementation of the TRUSTS platform will be developed and tested which integrates a
selection of existing open source components with components newly developed in order to cover the
functional requirements of the project. To achieve these goals we have concluded that the platform
architecture should be built around flexible and secure components that can be easily deployed. In addition,
infrastructure should be offered to provide flexibility with regards to the types of services or protocols used in
order to maximise the types of existing solutions which can be offered by participating organisations.

The TRUSTS architecture should be independent from an operating system, easy to deploy, and simple to
adapt. In addition, one of the most important considerations is the preservation of security and privacy by the
platform. For this reason, the platform should be built as a network of secure and sovereign nodes which can
communicate in a peer-to-peer fashion. In addition, each node should have the means to control how any data
is used by any of the services and applications which are deployed on that node. This also allows the mitigation
of security breaches by excluding potentially compromised nodes. Finally, the TRUSTS platform should enable
the deployment of services and portable applications independent of the technology or development
environment used to implement the service of applications, as long as a small set of API requirements is
fulfilled.

© TRUSTS, 2021 Page | 25

D2.6 Architecture design and technical specifications document I

The resulting requirements for the architecture are as follows:

T3.5 Platform Development and Integration

AR 3.5.1

Communication via a connector instance:

Communication between TRUSTS nodes should follow a standardised and secure protocol. It
should be possible to easily add new nodes to an existing ecosystem. For this purpose, a
connector component should be used as a universal communication component.

AR 3.5.2

Running a connector instance:

The source code of the connector component should be available for modification, if needed.
The implementation should allow adding new nodes to an existing ecosystem. In addition, any
required credentials or security certificates for running the connector, should be provided by
the TRUSTS operator.

AR 3.5.3

Communication between a connector instance and an application:

The Connector should provide means to communicate with any application inside the same
node, using routing of incoming and outgoing flows and this routing should allow for dynamic
changes. This communication should accommodate a large set of technologies used to
implement an application.

AR 3.5.4

Securing a connector instance:

The Connector should support the (existing) authentication, authorization and security system
inside the node.

AR 3.5.5

Connecting an application to a connector via an adapter:

It should be possible to create adapters for applications inside a node, which can not be
directly connected to the connector.

AR 3.5.6

Running components via docker:

All infrastructure which is provided by the TRUSTS platform in the form of shared components,
should run on Docker-Compose. This should include the connector, adapters and other shared
components.

AR 3.5.7

Usage control in a TRUSTS node:

All components running in a TRUSTS node should be connected to the usage control
component in order to check if any user initiated action is permissible.

AR 3.5.8

Metadata and security in a TRUSTS node:

All infrastructure components provided by the TRUSTS platform should support the metadata
and security infrastructure of TRUSTS.

AR 3.5.9
Configurability of TRUSTS nodes:

All infrastructure components provided by the TRUSTS platform should allow any changes to
TRUSTS functionality with minimum coding. These changes should be done easily and using

© TRUSTS, 2021 Page | 26

D2.6 Architecture design and technical specifications document I

configuration files where possible.

2.1.8 Architecture requirements related to brokerage and profiles for users and corporates

Another area of concern for the TRUSTS platform is brokerage and profiles for users and corporates.

Specifically, the main objective related to this is the realization of a mapping between offerings and demands
of users, datasets and services. To realize this, a recommender system will be developed with the following
three goals: (i) extract, process and store user interactions (e.g., downloads) and metadata of users/corporates,
services and datasets, (ii) develop and provide recommendation algorithms to interlink users/corporates,
services and datasets in this tripartite recommendation setting, and (iii) collect user feedback (e.g., clicks) to
evaluate and tune the recommendation algorithms.

Based on these goals, three requirements for the architecture of the TRUSTS platform were derived. The main
requirement for a recommender system to work is data. Thus, the first goal deals with data handling,
processing and storing, which requires a mechanism in the TRUSTS platform that informs the recommender
system about new potential resources to be recommended (i.e., datasets and services) and also interaction
data that the recommender system can use to train its algorithms (AR3.6.1). The second goal deals with the
development and integration of recommendation algorithms. Here, the recommender system requires a
mechanism in the TRUSTS platform to give context to the recommendation requests (e.g., the current user)
and to present recommendation results (AR 3.6.2). Finally, the third goal is related to the evaluation and tuning
process of the recommender system. This translates to the requirement of providing users of the TRUSTS
platform with functionality for interacting with recommendation results (AR3.6.3). More details to these
requirements are given below:

T3.6 User and Corporate Profiles and Brokerage

AR 3.6.1

Notification mechanism to provide data for the recommender system.

In order to provide the recommender system with data for training its algorithms, the TRUSTS
platform should provide a mechanism to transfer data to the recommender system. Therefore,
the recommender system will provide REST-based services to add (i) metadata of datasets, (ii)
metadata of services, (iii) metadata of users/corporates, and (iv) interactions between those
entities (e.g., if a user downloads a dataset). The TRUSTS broker and the TRUSTS platform
should use these services in order to notify the recommender system when new entities or
interactions come into the platform or when existing entities are changed.

AR 3.6.2

User interface component to show recommendations.

For visualizing recommendation results to users, the TRUSTS platform should provide a user
interface component that is capable of showing an ordered list of recommendations. For this
purpose, the recommender system will provide REST-based services for six recommendation
settings: (i) recommend datasets to users/corporates, (ii) recommend services to
users/corporates, (iii) recommend datasets to services, (iv) recommend services to datasets,
(v) recommend datasets to datasets, and (vi) recommend services to services. The TRUSTS
platform needs to use these services to query recommendations by providing parameters such

© TRUSTS, 2021 Page | 27

D2.6 Architecture design and technical specifications document I

as the current user, the currently viewed dataset or service, one of the six mentioned use
cases, the algorithm (e.g., collaborative filtering or content-based filtering) and the number of
recommendations to generate (the default value is 10).

AR 3.6.3

User interface component to interact with recommendations.

When recommendations are shown to users, the TRUSTS platform should also allow them to
interact with the recommendations, i.e., click on the recommendations to get additional
information. Thus, for every recommendation request, the recommender system will generate
a unique recommendation id that is provided with the list of recommendations. The TRUSTS
platform needs to store this recommendation id and whenever a user interacts with a
recommended entity informs the recommender system about this interaction, which is
interpreted as feedback to the recommendation. With this, the recommender system is able to
evaluate the quality of the recommendations and adapt the algorithms if necessary.
Furthermore, this allows us to conduct A/B tests and compare the quality of two types of
algorithms (e.g., collaborative filtering and content-based filtering).

2.1.9 Architecture requirements related to privacy enhancing technologies

Privacy enhancing technologies (PETs) are an additional concern of the TRUSTS platform. Related to this are the
objectives of investigating, designing and improving cryptographically secure protocols that enable data
analysis of privacy-sensitive data. Consequently, the focus will be on practical aspects of cryptographic building
blocks such as, but not limited to, secure multiparty computation and homomorphic encryption.

The results of this research will enable parties to collaborate over their private sensitive data and run advanced
analytics on multi-party datasets while preserving the data privacy.

The requirements below support several methods to preserve data privacy. These requirements can be fulfilled
by using data encryption methods such as Homomorphic encryption and sharing that encrypted data.
Alternatively, other related methods can be used, like Ensemble Modeling that enables advanced analytics over
multiple datasets. Each of the data owners will execute the analytics separately on their premises while sharing
only the models' algorithm, which will preserve the data privacy.

The work on privacy enhancing technologies for the TRUSTS platform results in the following architecture
requirements:

WP 4 - Privacy preserving technologies

AR 4.1

Computation using distributed and controlled execution environments:

Since private personal data cannot leave the premises of the data owner, TRUSTS must provide
an option to run analytics on the data while preserving the privacy of the users contained in the
data. In order to collaborate over private personal data, TRUSTS should supply the kind of
cloud services that will be part of the computation as described in the illustration below.

© TRUSTS, 2021 Page | 28

D2.6 Architecture design and technical specifications document I

Figure 2: Illustration for AR 4.1: Computation using distributed and controlled execution environments

AR4.2

Machine Learning using distributed and privacy preserving technologies:

In order to execute Machine Learning models in TRUSTS, the platform must provide a way to
develop, test and execute ML models, while supporting MPC /HM/Federated leaning and
similar services.

Figure 3: Illustration for AR4.2: Machine Learning using distributed and privacy preserving technologies

AR4.3

Option of execution of distributed and privacy preserving technologies on servers provided
by the TRUSTS operator:

As described in the previous requirements, in order to collaborate over private sensitive data,
the data owner must run the relevant ML model on their own servers.
In order to give the data owner an alternative to using their servers for computation, TRUSTS
should enable the option to execute the relevant computation on TRUSTS servers, while
enabling access only to the data owner. This can be done for example using a virtual private
network (VPN) created by the data owner.

© TRUSTS, 2021 Page | 29

D2.6 Architecture design and technical specifications document I

Figure 4: Illustration for AR4.3: Option of execution of distributed and privacy preserving technologies on servers

provided by the TRUSTS operator

AR4.4

Option of execution of distributed and privacy preserving technologies on servers provided
by a TRUSTS participant themselves:

Private personal data cannot leave the servers or the premises of the data owner, therefore
trading with private personal data is not a legitimate option. Due to this, the TRUSTS platform
needs to provide an option to trade on the analytics performed on this data.
In order to enable this, the TRUSTS platform needs to enable computation on its side, allowing
the data owner to protect themselves with an isolated environment (such as a VPN), as
described in the illustration below:

Figure 5: Illustration for AR4.4: Option of execution of distributed and privacy preserving technologies on servers

© TRUSTS, 2021 Page | 30

D2.6 Architecture design and technical specifications document I

provided by a TRUSTS participant themselves

AR4.5

Development of distributed services using privacy preserving technologies:

The TRUSTS platform needs to provide an option to develop, test, and execute services using
privacy preserving technologies. In addition, capabilities for logging and monitoring of these
technologies needs to be provided. These capabilities need to take account of the distributed
nature of privacy preserving technologies on the TRUSTS platform.

AR4.6

Scalability of the TRUSTS platform:

The TRUSTS platform needs to provide scalability for technologies which are dependent on
computation and network throughput for their performance.

AR4.7

Ensemble Modeling:

Since private personal data cannot leave the premises of the data owner, TRUSTS must provide
an option to run analytics on the data while preserving the privacy of the users contained in the
data.
One of the suggested methods is to use Ensemble Modeling.
The outcome of this method will be trading of pre-trained models that were trained to solve
the same problem.

There should be a kind of application store that will enable download and update of pre-
trained models.

2.1.10 Architecture requirements related to anonymization and de-anonymization

Data controllers prior to sharing their data need to become aware of the privacy risks in their data and apply
the appropriate anonymisation measures. The privacy risks arise because of de-anonymisation: the process of
identifying individuals in a dataset that does not contain any personally identifiable information (PII), such as
full name and address. To confront the privacy risks, anonymisation methods have been introduced.
Anonymisation methods distort a dataset in such a way, so that it conforms to a privacy model. In relation to
this, the aim is to provide an application that offers de-anonymization risk analysis modules for different kinds
of data, as well as anonymization methods that offer compliance to various privacy models. The application’s
aim is to raise awareness on the privacy risks of a data controller’s dataset, aid in the decision of the
anonymization measures and their extent, and help data controllers comply with the general data protection
regulation (GDPR) by protecting the privacy of the individuals in their datasets.

The figure below gives an overview of the usage of the application. Given two actors – a data seller and a data
buyer – the usage flow is as follows:

1. The data seller and the data buyer download the application from the TRUSTS platform to their
premises. The application needs to be executed on the TRUSTS users’ premises because non-
anonymised, privacy-sensitive, personal data are processed by the application, and such data should
not be uploaded to the platform. Additionally, to ensure that only verified TRUSTS users are using the
application, the platform needs to provide means of remote (i.e., from the users’ premises)
authentication.

2. The data seller imports their non-anonymised, privacy-sensitive, personal data to the application.
3. The data seller uses the de-anonymisation risk analysis modules.

© TRUSTS, 2021 Page | 31

D2.6 Architecture design and technical specifications document I

4. The data seller uses the anonymisation modules.
5. The data seller transfers the anonymised data to the data buyer. This will be feasible using the

capabilities of the IDS Trusted Connector.

The application will be packaged as a docker container to facilitate smooth execution and minimal installation
and configuration by the TRUSTS users.

Figure 6: Architecture requirements related to anonymisation and de-anonymisation

The resulting requirements for the architecture are as follows:

Architecture requirements related to anonymisation and de-anonymisation

AR 4.3.1

Applications need to be available to TRUSTS platform users for download

The task’s output is an application with de-anonymization risk analysis and anonymisation
modules that will be used both by data sellers and buyers. Since the application needs to
process non-anonymised, private, personal data of a data seller, the application needs to be
available for download, in order for it to be executed at the users’ premises

AR 4.3.2

Applications need to be hosted on the platform in a form that allows execution on the users’
premises

In order to facilitate smooth execution and minimal installation and configuration, the
application will be packaged as a docker container. Such a package, however, could be rather
sizable (hundreds of MBs to a few GBs). The platform needs to be able to host such sizable
files/packages.

© TRUSTS, 2021 Page | 32

D2.6 Architecture design and technical specifications document I

AR 4.3.3

Login and Authentication for Applications

In order to make sure applications are used only by the TRUSTS platform users, logging in to
the application and authentication should require validation by the platform.

AR 4.3.4

IDS Connector

The transfer of anonymised data from a seller to a buyer has to be done through IDS
connectors installed on the premises of the users. The platform should be able to support the
installation of IDS connectors on the users’ premises.

2.1.11 Architecture requirements following from the usage of Comprehensive Knowledge
Archive Network (CKAN) software

Based on the collection of functional requirements in deliverable D2.2 “Industry specific requirements analysis,
definition of the vertical E2E data marketplace functionality and use cases definition I”, it became clear that the
TRUSTS platform requires a user facing component for data management and related activities.

A common best-practice in software engineering is to reuse existing software libraries in order to benefit from
the stability and maturity of the library. Furthermore, existing libraries are ideally well-maintained and have a
community around them taking care of removing bugs or adding new features. Consequently, reusing existing
solutions increases robustness of the own solution. In TRUSTS, we aimed to follow this best-practice and
examined different existing solutions from the area of data management platforms. This resulted in the
selection of CKAN2 as the main user facing component for data management and related activities on the
TRUSTS platform.

CKAN is an open-source library to run self-hosted data management platforms. It provides a rich feature set
such as a built-in data catalog, search facilities, as well as user management for fine-grained role assignment.
CKAN has a dedicated extension mechanism to increase flexibility and add further functionality. The off-the-
shelf features of CKAN overlap with functional requirements identified in deliverable D2.2. CKAN has been
selected to become a central component during the establishment of the TRUSTS platform given the following
advantages:

● Significant overlap of existing CKAN features with TRUSTS requirements.
● Availability of data cataloging functionality.
● Included search functionality using Solr.
● Deployable using container technology.
● Fine-grained adjustment of publicity levels for assets, i.e. public or private.
● Robust and mature solution. Thousands of productive instances are deployed worldwide.
● Widely used by a plethora of data providers, e.g. governments (e.g. Australian Federal Open Data

Portal3) or other players (e.g. AQUACROSS4)

2 https://ckan.org/, last accessed April 23, 2021
3 https://data.gov.au/, last accessed April 23, 2021
4 http://dataportal.aquacross.eu/, last accessed April 23, 2021

© TRUSTS, 2021 Page | 33

D2.6 Architecture design and technical specifications document I

● Active maintenance by and responsiveness of the CKAN community

● A plethora of existing CKAN extensions that fulfil the requirements of TRUSTS, e.g. a harvesting
extension, a DCAT extension, or an OAUTH2 extension.

● The availability of a convenient extension mechanism facilitating the creation of features specific to
TRUSTS requirements

CKAN serves as a ready-to-use solution to provide an initial version of the user facing functionality of the
TRUSTS platform. Deployed on the TRUSTS cloud services, stakeholders within TRUSTS can access and utilize
the platform, register themselves and their companies, as well as upload datasets. This procedure helps to
familiarize with the concept of data markets, unveils hidden obstacles and opportunities for improvement, as
well as to detect flaws and bugs in the software. This initial version of the platform will continually undergo
improvements. Additional features identified via the functional requirements will either be implemented from
scratch or integrated from existing projects such as the DMA or the IDS. Consequently, the out-of-the-box
implementation of CKAN will be extended with regards to features, scope, and functionality and will also be
used to integrate with software modules from other work packages.

For the selection of a suitable out-of-the-box solution, several other existing libraries were examined as well.
However, they were not found to satisfy some of the requirements of TRUSTS. For example, Dataverse does
not provide an extension mechanism or an ecosystem of existing extensions, and also does not have fine-
granular adaptation of the publicity level of data assets. The latter two also apply to Fedora Commons, in
addition to the fact that it is not well-maintained. Lastly, Invenio lacks maturity and an extension ecosystem,
and requires significant setup effort, making it ineligible as an out-of-the-box solution.

Requirements following from the usage of CKAN

AR 3.3.9

CKAN extension mechanism

TRUSTS components should ideally be integrated using CKAN’s built-in extension mechanism.
Developers need to consider this and design and develop their solutions in a way that they can be
easily integrated into CKAN.

2.2 Summary of Architecture Requirements

The following is a summary of all previously listed architecture requirements. We have grouped all architecture
requirements into architecture requirement summaries, labelled ARS, and provided a short description of each
such summary. The original architecture requirements (ARs) which are summarised by an ARS, are listed in the
right most column. Every original architecture requirement is included in at least one ARS.

Table 2: Summary of Architecture Requirements

ARS ID Short description Original AR
numbers

© TRUSTS, 2021 Page | 34

D2.6 Architecture design and technical specifications document I

ARS 1 Smart contracts, which are based on data sharing policies, are supported. 3.X.1

3.X.5

3.2.1

ARS 2 All transactions on any node, which is part of a TRUSTS platform instance, are
logged.

3.X.1

3.X.5

3.2.2

ARS 3 All data assets / data products in a TRUSTS platform instance, use metadata
schema or vocabularies.

3.X.5

3.X.6

3.3.1

3.4.11

3.5.8

ARS 4 External data marketplaces can be integrated into a TRUSTS platform instance. 3.X.3

3.3.2

3.3.3

3.3.4

ARS 5 The operator of a TRUSTS platform instance can use an an administrative
interface. Users of the platform also have an interface available.

3.X.4

3.3.5

3.4.12

ARS 6 Every TRUSTS platform instance is a distributed set of nodes. 3.X.3

3.4.1

ARS 7 Each node runs software components, which are distributed as docker
containers, and can be configured via configuration files.

3.X.4

3.X.5

3.4.2

3.5.6

3.5.9

ARS 8 Each node needs to run an instance of the trusted connector. It is required for
communication between nodes and within a node

3.X.1

© TRUSTS, 2021 Page | 35

D2.6 Architecture design and technical specifications document I

3.X.2

3.X.3

3.4.3

4.3.4

3.5.1

3.5.2

3.5.3

3.5.5

ARS 9 Each node has an internal directory of running software components 3.X.3

3.X.5

3.4.4

ARS 10 A node can internally be a distributed node itself. 3.X.3

3.4.5

ARS 11 Every TRUSTS platform instance has at least one node which runs an instance
of the Broker component.

3.X.3

3.X.6

3.4.6

ARS 12 A node must be able to run apps on premise. 3.X.3

3.4.7

4.3.1

4.3.2

ARS 13 Assets (such as data assets) in a node can be managed locally. 3.X.3

3.X.5

3.4.8

ARS 14 A node is able to harvest metadata from its local assets. 3.X.3

3.X.5

3.4.9

ARS 15 Recommendations in a node are integrated into the TRUSTS platform, which 3.X.4

© TRUSTS, 2021 Page | 36

D2.6 Architecture design and technical specifications document I

provides data, delivers recommendations and returns feedback. 3.4.10

3.6.1

3.6.2

3.6.3

ARS 16 Instances of the trusted connector support existing security infrastructure
inside of a node, and connect it to the usage control of the TRUSTS platform.

3.X.1

3.X.2

3.5.4

3.5.8

4.3.3

ARS 17 Computation using distributed and controlled execution environments is
possible in every instance of the TRUSTS platform.

3.X.1

3.X.3

4.1

ARS 18 Machine Learning using distributed and privacy preserving technologies is
possible in every instance of the TRUSTS platform.

3.X.1

3.X.2

3.X.3

4.2

ARS 19 Every instance of the TRUSTS platform provides the option of execution of
distributed and privacy preserving technologies on nodes provided by the
operator of the instance.

3.X.1

3.X.2

3.X.3

4.3

ARS 20 Every instance of the TRUSTS platform provides the option of execution of
distributed and privacy preserving technologies on servers provided by a
TRUSTS participant themselves.

3.X.1

3.X.2

3.X.3

4.4

ARS 21 Development of distributed services using privacy preserving technologies is
possible in every instance of the TRUSTS platform. (This refers to Devops.)

3.X.1

3.X.2

4.5

© TRUSTS, 2021 Page | 37

D2.6 Architecture design and technical specifications document I

ARS 22 Every instance of the TRUSTS platform provides scalability for services and apps
running on the platform instance.

3.X.3

4.6

ARS 23 The user interfaces of all TRUSTS components are integrated into the CKAN
extension mechanism.

3.X.4

3.3.9

3 Technical architecture of the TRUSTS platform

The architecture of the TRUSTS platform represents the blueprint for the results of the TRUSTS project. As
such, it also represents the foundation for instances of the TRUSTS platform which will be provided by one or
more TRUSTS operators after the duration of the project.

In this section, we provide a description of the architecture of the TRUSTS platform, in terms of component
descriptions, interconnections and other technical details of the architecture. First, we provide a general
overview of the architecture and explain the most important concepts of the architecture. This is followed by a
description of each component of the architecture, as well as how components are connected within the
platform, as well as to external data marketplaces for the purpose of interoperability and federation. The
component descriptions are followed by an overview of the mapping between functional requirements (FRs)
and components, and the mapping between architectural requirements (ARs) and components.

3.1 Overview of the technical architecture

The TRUSTS platform is a set of interconnected nodes, each owned and operated by different organizations, on
which the trusted exchange of digital assets is possible. Each node is a computing environment (e.g., a virtual
machine) which runs a set of standardized components to support the different functionalities of the platform.
Along these components, common to all nodes, organizations can execute their in-house developed
applications and services. These applications and services can then be traded through the TRUSTS platform,
and can also, in turn, consume and produce other assets through the platform.

Components deployed within a node are connected among themselves through a network environment
provided and secured by the node’s operator. The connections between different nodes are all done using the
IDSCPv2 communication protocol, and are handled by the set of standardized components. In particular,
connections coming from outside the node are first received by the Trusted Connector component and then
distributed to other components. The IDSCPv2 protocol, apart from the standard asymmetric-key encryption of
modern HTTPS connections, allows for conveying information specific for the functionalities of the platform.
This includes user identification tokens, names and ports of the different nodes involved, as well as IDs of the
components they are destined to. A schematic of these network connections is shown below.

© TRUSTS, 2020 Page | 38

Figure 7: Diagram of the technical architecture

© TRUSTS, 2020 Page | 39

Figure 8: Overview of networks involved in the TRUSTS platform

The entire list of components within a node are listed in section 3.2. Using this standardized set of components
in a node allows for a consistent set of functionalities to be available to all participants in the TRUSTS platform,
as well as enforcing a set of constraints on the functioning, trading and access to assets within nodes. These
constraints and functionalities are themselves the implementation of the functional requirements specified for
the TRUSTS platform, as listed in deliverable D2.2. A description of how these components are used, and how
they are related to the functional requirements and the architecture requirements can be found in section 3.2
below.

For an organization to install a TRUSTS node, they must enter a subscription agreement with the TRUSTS
operator, after which they will be provided with a series of software artifacts, cryptographic certificates and
instruction manuals for the set-up. This will involve, among other steps, creating a dedicated computing
environment with a controlled set of open ports and other firewall rules. These rules shall imply, for example,
that the only connection between the node and the internet will be through the Trusted Connector.
Furthermore, it shall allow for other connections inside the organization’s private network, in order for
applications acquired through the TRUSTS platform to be accessible to the organization’s users, for example.
Finally, a set of technical information exchanges should be carried out between the TRUSTS operator and the
node operator, for example, regarding a set of IP addresses and ports which are to be contact points between
the nodes.

3.1.1 Types of nodes

Among the nodes of the platform, there are two which are of special importance since they host a set of
services necessary for the operation of the platform as a whole. These set of components, akin to the IDS
essential services, are to be hosted by one special organization, referred to as the TRUSTS Operator, which
holds a position of special trust with the other organizations hosting nodes. The two nodes owned by the

© TRUSTS, 2021 Page | 40

D2.6 Architecture design and technical specifications document I

TRUSTS Operator are the User Portal Node and the Central Node, while every other node is referred to as a
Corporate Node.

All three types of nodes have infrastructure built around the Trusted Connector

- Corporate Node Is used by partners of TRUSTS that have complex infrastructure and participate in
TRUSTS. They can have many users and many services and applications that are provided or consumed
via the TRUSTS platform. They can set any authorization system and communication structure inside
their nodes. The TRUSTS Operator is not responsible for setting up or supporting instances of corporate
nodes, but will provide detailed instruction manuals and all necessary software. Among the
components being set up, is the Corporate Interface, a web application through which the
organization’s users can interact with the TRUSTS platform.

- User Portal Node Is created to cover the needs of individual users of the TRUSTS platform. It is set up
and maintained by the TRUSTS Operator. By accessing this node, individual users can benefit from
some of the functionalities of the TRUSTS platform, without the complexity of setting up a corporate
node. Additionally, it is the entry point for all organizations intending to join the TRUSTS platform, as it
provides landing pages, legal information, and setup instructions. One of the components included in
this node is the platform Interface, which acts as the main point of access to the above mentioned
functionalities. In principle, the TRUSTS platform could have more then one User Portal Node.

- Central Node Exists to support the operation of the whole TRUSTS platform, playing the role of
authorization, monitoring, smart contract executor, catalog, application repository, among others. This
node is created and maintained by the TRUSTS Operator.

3.1.2 Data sets / services / applications

Three types of assets are envisioned to be traded among the participants of the TRUSTS platform. The specific
choice of these types of assets was made after careful analysis of the requirements collected in Deliverable 2.1
as well as further discussion with the different stakeholders of the three use cases of the project. These three
types of assets are listed and defined below. Section 3.2 describes how each of these is handled by the TRUSTS
platform, whose components are described below.

Dataset. These are static files which can be traded. They are equivalent to the notion of DCAT:Dataset, in terms
of metadata and scope. These files are transmitted directly from provider to consumer, and once they have
been received, they are, from the technical point of view, mere files in the consumer’s file system.

Service. These are computer programs which are executed in the provider’s node. They can, upon contractual
agreement, be executed on request of a consumer with the input of their choice. Services are envisioned to
function as do standard web services: a server is running and accepts connections, processes the input, and
returns the output to the requester. There is no prescription on the stateful-ness of services, but they have to
expose an HTTP interface.

Application These are computer programs which are executed in the consumer’s node. They are distributed as
file bundles, which consist of a combination of container images, deployment scripts and configuration files.
The provider of the application has total freedom regarding implementation and functionalities, and can

© TRUSTS, 2021 Page | 41

D2.6 Architecture design and technical specifications document I

choose to make the application accessible only through the consumer node’s Trusted Connector instance, thus
enabling the use of TRUSTS provided functionalities, such as user authentication.

3.1.3 Connections within the TRUSTS architecture

In the general architecture diagram (Figure 7), six specific data flows are pictured. These are meant as
examples of the interactions between the different components in different nodes, and aim to specify how the
choice of components and their arrangement relate to the functional requirements.

Communication protocols used by components within the TRUSTS platform

To properly and fully integrate components and services within the TRUSTS platform, those components and
services need to provide a description of existing interfaces based on the best practices which are summarised
by the REST (representational state transfer) paradigm. The REST paradigm for describing services is the most
widely used web service interconnection approach and the most common standard in interaction between
distributed software components. Additionally, services using REST are much easier to test compared to other
service specifications, such as MQTT and SOAP. RESTful services have no restriction on the size of messages
and are a lightweight approach to integration. RESTful services are supported by the trusted connector
component, which is used in the TRUSTS platform.

Ingest metadata

When an organization wishes to make an asset it possesses available through the TRUSTS platform, it must
make metadata about the asset available. This process is referred to as onboarding of assets in the
requirements documents.

The origin of the metadata can be a metadata storage about datasets (e.g. a directory in a file system, a csv file,
a data management platform), a machine-readable description of a web service, or a standardized description
of deployment and configuration of an application. These three sources are all accessed, as per input by the
user in charge of onboarding, by the Corporate Interface running in the organization’s node, which collects the
metadata and adds to it metadata about the node itself. This process can be assisted by the Metadata Mapper
component which can convert from several metadata schemas into the one being used by the TRUSTS
platform. Finally, the Corporate Interface also provides the user with the means to specify the contracting
options by which the asset in question will be made available.

When the user is ready to make the asset available for purchase and access through the TRUSTS platform, they
can request the Corporate Interface to send information about it to the Broker component present in the
Central Node. The broker then stores this metadata in the authoritative central metadata repository, which the
Platform Interface in the User Portal Node, or the Corporate Interface in any Corporate Node, will query.

Discover and buy asset

When a user wishes to acquire an asset through the TRUSTS platform, they must first present credentials either
in the Platform Interface or in any Corporate Interface to which they have access. This interface will present
them with the tools necessary to search, select an asset and select access options (including contracting and

© TRUSTS, 2021 Page | 42

D2.6 Architecture design and technical specifications document I

billing). Once the process is complete, a record of the transaction is entered into the smart contract executor
component in the Central Node.

Access bought asset

For a user to access an asset they have acquired, they will request access through an Asset Consumer
component located in the node in which they have credentials. This request can be, for example, the result of
clicking a “Download Dataset” link in either the Platform or the Corporate Interface, an HTTP request made by
a software application controlled by the user and wishing to access an asset on their behalf, or an application-
deployment mechanism (e.g. Docker pull) requesting download of a docker image. In any case, the asset
consumer will convert this request into an IDSCPv2 message requesting access, coupling it with the user’s
authentication token, signing it with the appropriate cryptographic certificate, and forwarding to the Trusted
Connector of the node providing the asset. This Trusted Connector will receive the request, consult with the
node’s Usage Control component (see below) and, if appropriate, forward the request to the component which
hosts the asset, such as a running HTTP server (in the case of services) or the Corporate Interface (in the case of
datasets).

Check access

When a Trusted Connector receives a request for an asset hosted in its node, it will forward certain metadata
about the request to the Usage Control component. This component will, in turn, request information from the
smart contract executor (running in the Central Node) which will return the status of the requester’s contract
for the asset in question. If the status is favourable, the Trusted Connector will be notified and the Dataflow
Router will forward the request appropriately (see above), the smart contract executor will be notified of the
access operation for it to be recorded, and the Smart Contract Execution module will execute any associated
smart contract.

Install application

Installing an application that has been acquired through the TRUSTS platform will be done by downloading the
applications configuration bundle from the provider’s node (see above) into the consumer’s node. This will be
followed by a pull operation by the Docker Daemon running in the consumer’s node. This operation will also be
validated (see above) for compliance with the contract pertaining to the application, before the image is
transferred. Once installed, the application will be executed according to the configuration files that are part of
the bundle.

Use controlled vocabularies

Several components within the TRUSTS platform make use of controlled vocabularies for, e.g. storing and
displaying labels describing assets, or enriching search results. This will be done by accessing a centralized
Vocabulary Service, running in the Central Node, which will be kept up-to-date by the TRUSTS operator.

3.1.4 Interoperability with External Data Markets and EOSC Initiatives

One of the objectives of the TRUSTS project is a connection to third party data markets and EOSC initiatives.
TRUSTS will develop a component dedicated for this task, the so-called interoperability component. This

© TRUSTS, 2021 Page | 43

D2.6 Architecture design and technical specifications document I

component will help external stakeholders to connect with TRUSTS and share and exchange their resources on
TRUSTS. The interoperability solution consists of a component residing on the premises of the external data
market or EOSC initiative as well as a TRUSTS component interacting with the client component. The
components exchange information such as metadata, which in turn will be stored in the storages of TRUSTS.

A significant challenge of the development of this component is the strong diversity of the technological
characteristics of external data markets and EOSC initiatives. Consequently, TRUSTS will not develop a solution
for each of them. Instead, TRUSTS aims to build a solution exposing the requirements of TRUSTS, i.e., the
TRUSTS metadata schema. This schema is an extension of the IDS Information Model. It is an open, non-
proprietary, based on a widely accepted model (such as DCAT5) and covers a wide variety of technological
requirements. External stakeholders will turn their metadata and data assets into a format understood by
TRUSTS. The interoperability solution will be developed based on the requirements of a select set of external
data markets and EOSC initiatives.

The two mentioned components, i.e., the Data Exchange Client Component and the Data Exchange TRUSTS
Component, are supported by the Registry of Data Markets. This component contains up-to-date information
about existing data markets and will help to identify data markets suitable for building the interoperability
prototype.

3.2 Components of the architecture
For each component we list the following attributes:

● Component number.
● Component name.
● Short component description.
● Input dependencies: the names of other components which provide input for the component.
● Output dependencies: the names of other components which require output from the component.
● Requirements addressed: references to the functional and architectural requirements which are

addressed by the component.

C1 Trusted Connector

Interface to nodes in the TRUSTS platform. Provides certified connections between pairs of nodes, serving as
a proxy between the different services running on a node, and other nodes. It is based on Apache Camel and
has functionalities for transaction management / usage control.

Input dependencies:

● Dataflow router

Output dependencies:

● Corporate Interface

5 DCAT: https://www.w3.org/TR/vocab-dcat-2/, last accessed April 23, 2021

© TRUSTS, 2021 Page | 44

D2.6 Architecture design and technical specifications document I

● Corporate Interface
● Usage Control
● Automated Certificate Management

Environment (ACME)
● Dynamic Attribute Provisioning System

(DAPS)

● Platform Interface
● Usage Control
● Broker

Requirements addressed:

FR27, FR28, FR31, FR38, FR39, FR40, FR41, FR42, FR43

ARS2, ARS7, ARS8, ARS12, ARS16, ARS17, ARS18, ARS19, ARS20, ARS21

C2 Dataflow Router

Add-on to the trusted connector that initializes and destroys routes within a node as required by incoming
and outgoing connection. For example, if there are N services running in a node (e.g. a CKAN instance, some
APIs) and the Trusted Connector receives a request a access one particular service, this component creates a
route in the Apache Camel configuration of the connector.

Input dependencies:

● Corporate Interface
● Platform Interface
● Usage Control
● Trusted Connector
● Services Consumer Adaptor
● Operation Converter

Output dependencies:

● Corporate Interface
● Platform Interface
● Usage Control
● Trusted Connector
● Services Consumer Adaptor
● Operation Converter

Requirements addressed:

FR 27

ARS8, ARS9, ARS10, ARS16, ARS22

C3 Reverse Proxy

For connections from a web-browser into nodes (e.g. for accessing portals), this component distributes the
requests among the different services. Implementation can be Nginx, Traefik, HAProxy or similar.

© TRUSTS, 2021 Page | 45

D2.6 Architecture design and technical specifications document I

Input dependencies:

● None.

Output dependencies:

● Corporate Interface
● Platform Interface
● Mapping builder
● Notification Service
● Asset consumer
● Business Support Services

Requirements addressed:

ARS5, ARS23

C4 Recommender

Provide four recommendation settings: (i) recommendation of services to users/corporates, (ii)
recommendation of datasets to users/corporates, (iii) recommendation of datasets to services, and (iv)
recommendation of services to datasets.

Input dependencies:

● Broker + Metadata Storage
● Platform Interface

Output dependencies:

● Platform Interface

Requirements addressed:

FR6, FR7, FR8

ARS15

C5 Platform Interface

This component should support users with opening accounts, searching for datasets and services (free and
chargeable) and consuming them. It should provide means to sign contracts with providers of datasets and
services. Additionally it allows consumers to rate dataset and service providers.

Input dependencies: Output dependencies:

© TRUSTS, 2021 Page | 46

D2.6 Architecture design and technical specifications document I

● Dataflower Router
● Recommender
● Vocabulary Service
● Metadata Mapper
● Broker

● Dataflower Router
● Trusted Connector

Requirements addressed:

FR1, FR3, FR4, FR5, FR25, FR27, FR29, FR30, FR31, FR32, FR33, FR34, FR36, FR37, FR44

ARS5, ARS23

C6 Landing Page

A website for non-registered users to learn about TRUSTS platform, legal terms, contact points, etc.

Input dependencies:

● Reverse Proxy

Output dependencies:

● Platform interface

Requirements addressed:

ARS5

C7 Asset Consumer

Satisfies the use case when a user logs into platform node X using their web browser and wants to access an
asset on node Y. Given that node Y only serves assets through the Trusted Connector, this component,
executed in node X, routes the browser’s request through the Trusted Connector, into node Y.

Input dependencies:

● Reverse Proxy

Output dependencies:

● Trusted Connector

Requirements addressed:

FR27, FR29

ARS13, ARS14

© TRUSTS, 2021 Page | 47

D2.6 Architecture design and technical specifications document I

C8 Notification Service

This component informs Consumers about changes in datasets and services that they already have access
too.

Input dependencies:

● Broker + Metadata Storage

Output dependencies:

● Notification service

Requirements addressed:

FR35

ARS5, ARS13

C9 Metadata Mapper

This component transforms existing metadata that organizations might have in their pre-existing data stores,
into the IDS-IM specification. Once this metadata is converted, it can be ingested into the local Metadata
Registry and then broadcast into the Central Catalogue for advertising to other participants.

Input dependencies:

● Mapping Builder

Output dependencies:

● Platform Interface
● Corporate Interface

Requirements addressed:

FR23

ARS3, ARS14

C10 Usage Control

This ad-on to the Trusted Connector provides Access and Usage Control to Datasets and Services. When a

© TRUSTS, 2021 Page | 48

D2.6 Architecture design and technical specifications document I

request to access an asset is received, this component checks if there is a contract between provider and
consumer for said asset, and if that contract is in a valid state. If so, invokes the Dataflow Router for further
processing of access.

Input dependencies:

● Smart Contract Execution
● Identity Provider
● Trusted Connector

Output dependencies:

● Dataflow Router
● Smart Contract Executor

Requirements addressed:

FR29, FR38, FR44

ARS16

C11 Mapping Builder

A user interface that helps providers builds Mapping files to convert their metadata into the IDS-IM, which is
TRUSTS metadata model.

Input dependencies:

● Vocabulary Services

Output dependencies:

● Metadata Mapper

Requirements addressed:

FR23, FR33

ARS3

C12 Corporate Interface

This component allows corporate inside TRUSTS Corporate node to manage the assets that they wish to
provide through the TRUSTS platform. Also it should provide means to sign contracts with consumers of
datasets and services. Additionally it allows consumers to rate dataset and service providers.

Input dependencies: Output dependencies:

© TRUSTS, 2021 Page | 49

D2.6 Architecture design and technical specifications document I

● Usage Control
● Dataflower Router
● Metadata Mapper
● Recommender
● Services Consumer Adaptor

● Dataflower Router
● Trusted Connector
● Usage Control
● Recommender

Requirements addressed:

FR1, FR3, FR4, FR5, FR27, FR29, FR30, FR31, FR32, FR34, FR36, FR37, FR44

ARS5

C13 Services Consumer Adapter

This component allows for services that are deployed by a participant in their Corporate Node to be offered
through the TRUSTS platform. Thus, all pre-existing web APIs (e.g. REST) can be accessed through a unified
gateway that incorporates usage control and user authentication synchronized with the TRUSTS platform.

Input dependencies:

● Trusted Connector
● Identity Provider
● Usage Control
● Pre-existing (legacy) services

Output dependencies:

● Trusted Connector

Requirements addressed:

ARS6, ARS10

C14 Data Exchange TRUSTS Component

This component is deployed in TRUSTS nodes and ingests assets from third-party data-markets and EOSC and
its related initiatives into the TRUSTS catalog. It receives input from the Data Exchange Client Component and
converts it, if necessary, into the format required by TRUSTS. This component is also connected to the
Registry of Data markets, receiving information about data markets and EOSC and its related initiatives
connected with TRUSTS. Based on this information, the component connects to the respective Data Exchange
Client Components and acquires their metadata or data assets.

© TRUSTS, 2021 Page | 50

D2.6 Architecture design and technical specifications document I

Input dependencies:

● Third Party Marketplaces
● EOSC and its related initiatives
● Registry of Data markets

Output dependencies:

● Metadata Mapper
● Usage Control

Requirements addressed:

FR2, FR4, FR23

ARS4

C15 Data Exchange Client Component

This component resides at the location of a third party data market or EOSC initiative. It provides an interface
to specify and select data assets and to map their metadata schema into a format understood by TRUSTS. The
component communicates with the Data Exchange TRUSTS Component. Furthermore, it communicates with
the Registry of Data markets and updates in case of relevant changes.

Input dependencies:

● Third Party Data market
● EOSC and its initiatives
● Registry of Data markets

Output dependencies:

● Registry of Data markets
● Data Exchange TRUSTS Component

Requirements addressed:

FR2, FR4, FR23,

ARS4

C16 Registry of Data markets

This component lists existing third party data markets and relevant initiatives of EOSC. On the one hand, this
helps to form a community around TRUSTS. On the other hand, the component serves as an address book
routing the communication between the Data Exchange TRUSTS Component and the Data Exchange Client
Components installed on the premises of third party data markets and EOSC initiatives.

© TRUSTS, 2021 Page | 51

D2.6 Architecture design and technical specifications document I

Input dependencies:

● Data Exchange Client Component

Output dependencies:

● Data Exchange TRUSTS Component

Requirements addressed:

FR2, FR4,

ARS4

C17 Business Support Services

This component will be used for monitoring and administration TRUSTS activities. It allows for the managing
the list of connected organizations, monitoring of logs, and managing of fees collectable by the TRUSTS
operator.

Input dependencies:

● smart contract executor

Output dependencies:

● Reverse Proxy

Requirements addressed:

FR33

C18 Broker + Metadata Storage

The broker, and its accompanying metadata store, serves a central repository of all metadata regarding
assets, participants and resources, as specified in the IDS-IM. It is a web application that serves as a wrapper
of a Knowledge Graph that is compliant with the IDS-IM ontology. It collects metadata from the different
corporate nodes and provides it to the smart contract executor and the platform interface in the User Portal
Node (regarding assets), as well as to the Business Support Services (regarding organizations).

Input dependencies:

● Corporate Interface

Output dependencies:

● Smart contract executor
● Business Support Services

Requirements addressed:

© TRUSTS, 2021 Page | 52

D2.6 Architecture design and technical specifications document I

FR1, FR3, FR5, FR18, FR21, FR22, FR23, FR25, FR26,

ARS11

C19 App Store

Apps are docker images thar participant organizations can, after signing a contract with the provider, pull and
execute in their premisses. The app store is a docker registry that is coupled with the TRUSTS platform to
ensure that (push or pull) operations are compliant with a contract.

Input dependencies:

● None

Output dependencies:

● Trusted Connector

Requirements addressed:

FR19, FR24, FR38, FR39, FR40, FR41, FR42, FR43,

ARS12

C20 Identity Provider + Key Distribution System

This component should provide users means to be a member of TRUSTS Ecosystem in a secure way. It will
issue cryptographically signed authentication tokens. It should also distribute the public keys to verify the
authenticity of said tokens.

Input dependencies:

● Platform Interface
● Corporate Interface
● Usage Control
● Business Support Services

Output dependencies:

● Usage Control
● Platform Interface
● Corporate Interface

Requirements addressed:

FR29, FR36, FR37, FR38, FR43, FR44,

ARS16

© TRUSTS, 2021 Page | 53

D2.6 Architecture design and technical specifications document I

C21 Vocabulary Services

All assets, organizations and components which are part of the TRUSTS platform is described as much as
possible in terms of controlled vocabularies. These include, for example, taxonomies of keywords, types of
assets, types of components, etc. These are maintained in this central location which provides other
components with access to the list and definition of the terms in the vocabularies.

Input dependencies:

● Reverse Proxy

Output dependencies:

● Mapping Builder
● Corporate Interface
● Platform Interface
● Broker

Requirements addressed:

FR19, FR20, FR21, FR22, FR24, FR25,

ARS3

C22 Dynamic Attribute Provisioning System (DAPS)

This is a component to support secure communication, authentication and authorization in TRUSTS
infrastructure.

Input dependencies:

● Trusted Connector
● Automated Certificate Management

Environment (ACME)
● Business Support Services

Output dependencies:

● Trusted Connector

Requirements addressed:

FR38, FR43, FR44

ARS16

© TRUSTS, 2021 Page | 54

D2.6 Architecture design and technical specifications document I

C23 Automated Certificate Management Environment (ACME)

This component enables automation for management of certificates in the TRUSTS infrastructure.

Input dependencies:

● Dynamic Attribute Provisioning System
(DAPS)

Output dependencies:

● Dynamic Attribute Provisioning System (DAPS)
● Trusted Connector

Requirements addressed:

FR38, FR43, FR44

ARS16

C24 Smart Contract Executor

When access to a dataset is registered in a node, this action can result in triggering smart contract rules. The
Smart Contract Executor is the component responsible for receiving information about this transaction,
entering it into an appropriate logging mechanism, and performing the operations specified by the smart
contract. The smart contracts can interact with other components related to security and privacy to check
the ability of the consumer to get/use a dataset/service from a provider. The result then is documented
with a logging mechanism and returned to the party which triggered the smart contract.
This component stores smart contracts which have customizable input parameters which can be derived
from (1) asset metadata, (2) the offering, and (3) the contract participants to enable a given contract's reuse
for different transactions. A standard human readable description is attached to the smart contract.

Input dependencies:

● Business Support Services
● Usage Control
● Smart Contract Executor

Output dependencies:

● Usage control

Requirements addressed:

FR10, FR11, FR12, FR13, FR14, FR15, FR16, FR17, FR30, FR38, FR43,

ARS1, ARS2

© TRUSTS, 2021 Page | 55

D2.6 Architecture design and technical specifications document I

In summary, the following components are considered part of the TRUSTS technical architecture:

● C1 - Trusted Connector
● C2 - Dataflow Router
● C3 - Reverse Proxy
● C4 - Recommender
● C5 - Platform Interface
● C6 - Landing Page
● C7 - Asset Consumer
● C8 - Notification Service
● C9 - Metadata Mapper
● C10 - Usage Control
● C11 - Mapping Builder
● C12 - Corporate Interface
● C13 - Services Consumer Adapter
● C14 - Data Exchange TRUSTS Component
● C15 - Data Exchange Client Component
● C16 - Registry of Data markets
● C17 - Business Support Services
● C18 - Broker + Metadata Storage
● C19 - App Store
● C20 - Identity Provider + Key Distribution System
● C21 - Vocabulary Services
● C22 - Dynamic Attribute Provisioning System (DAPS)
● C23 - Automated Certificate Management Environment (ACME)
● C24 - Smart Contract Execution

3.2.1 Summary of connections between functional requirements and components

In the following we provide an overview showing which components need to address which functional
requirements:

Table 3: Summary of connections between functional requirements and components

ID of functional
requirement (FR)

IDs of components, which address the requirements

FR 1 C5, C12, C18

FR 2 C14, C15, C16

FR 3 C5, C12, C18

FR 4 C5, C12, C14, C15, C16

© TRUSTS, 2021 Page | 56

D2.6 Architecture design and technical specifications document I

FR 5 C5, C12, C18

FR 6 C4

FR 7 C4

FR 8 C4

FR 9 C19

FR 10 C24

FR 11 C24

FR 12 C24

FR 13 C24

FR 14 C24, C24

FR 15 C24

FR 16 C24

FR 17 C24

FR 18 C18

FR 19 C21

FR 20 C21

FR 21 C18, C21

FR 22 C18, C21

© TRUSTS, 2021 Page | 57

D2.6 Architecture design and technical specifications document I

FR 23 C9, C11, C14, C15, C18

FR 24 C19, C21

FR 25 C5, C18, C21

FR 26 C18

FR 27 C1, C2, C5, C7, C12

FR 28 C1

FR 29 C5, C7, C10, C12, C20

FR 30 C5, C12, C24

FR 31 C1, C5, C12

FR 32 C5, C12

FR 33 C5, C11, C17

FR 34 C5, C12

FR 35 C8

FR 36 C5, C12, C20

FR 37 C5, C12, C20

FR 38 C1, C10, C19, C20, C22, C23, C24, C24

FR 39 C1, C19

FR 40 C1, C19

© TRUSTS, 2021 Page | 58

D2.6 Architecture design and technical specifications document I

FR 41 C1, C19

FR 42 C1, C19

FR 43 C1, C19, C20, C22, C23, C24

FR 44 C5, C10, C12, C20, C22, C23

3.2.2 Summary of connections between architecture requirements and components

In the following we provide an overview showing which components address which architecture requirements:

Table 4: Summary of connections between architecture requirements and components

ID of Architecture
requirement (AR/ARS)

IDs of components, which address the requirements

ARS 1 C24

ARS 2 C1, C24

ARS 3 C9, C11, C21

ARS 4 C14, C15, C16

ARS 5 C3, C5, C6, C8, C12

ARS 6 C13

ARS 7 C1

ARS 8 C1, C2

ARS 9 C2

© TRUSTS, 2021 Page | 59

D2.6 Architecture design and technical specifications document I

ARS 10 C2, C13

ARS 11 C18

ARS 12 C1, C19

ARS 13 C7, C8

ARS 14 C7, C9

ARS 15 C4

ARS 16 C1, C2, C10, C20, C22, C23

ARS 17 C1

ARS 18 C1

ARS 19 C1

ARS 20 C1

ARS 21 C1

ARS 22 C2

ARS 23 C3, C5

© TRUSTS, 2021 Page | 60

D2.6 Architecture design and technical specifications document I

4 Design considerations for the architecture of the TRUSTS
platform

The technical architecture of the TRUSTS platform is influenced in three ways: (1) by the functional and (2) by
the technical requirements, but also (3) by the vision of the technical experts in the project.

The functional requirements were collected mainly from experts inside and outside of the project, and are
collected in deliverable D2.2 “Industry specific requirements analysis, definition of the vertical E2E data
marketplace functionality and use cases definition I”. The technical requirements were collected from the
technical experts in the project, and are listed in Section 3 “Technical Requirements for the architecture”.

The vision for the architecture is based on a consensus of the technical experts who are participating in the
project. The vision is expressed in several design considerations for the technical architecture, which we will
describe in this section.

In addition, the experts for business models and innovation in the project will collect business requirements,
which will also shape the technical architecture and the technical implementation of the TRUSTS platform in
the future.

In this section, we first will describe several functional requirements which have influenced the architecture as
a whole. Then we describe functional requirements which are based on the use cases from work package 5.
This is followed by a description of two unique selling points of the TRUSTS architecture: the ability to handle
services as part of a data marketplace, and the ability to handle portable applications as part of a data
marketplace. We then describe which components of the TRUSTS architecture enable the establishment of
trust between participants of an instance of the TRUSTS platform. Finally, we close the section by giving an
overview of how we are planning for the evolution of the architecture by employing an idea from agile
development which is called “Minimum Viable Product (MVP)” [4, 5].

4.1 Functional requirements which are addressed by the architecture as a whole
The use of the components listed here could be summarized as follows: Each organization has a set of
components which, along with those deployed centrally by the TRUSTS operator, ensure that the assets it is
offering are accessed in a trusted manner and in accordance with the contract it assigns. Likewise, consuming
assets that are provided in the TRUSTS platform requires interaction with a set of components, so that privacy,
data ownership, and contractual requirements can be enforced.

Apart from the FRs that are addressed in individual components (as listed above), we highlight three that have
been of special interest when defining the architecture proposed here.

© TRUSTS, 2021 Page | 61

D2.6 Architecture design and technical specifications document I

FR28: TRUSTS should be able to be deployed as a federation of distributed, interconnected and interoperable
nodes.

 This FR is addressed by the creation of a set of standardized components that will be distributed to all
participating organizations, as well as the adoption of a protocol for interconnection between them. In
particular, the semantics of the IDSCPv2 protocol are enhanced in the proposed architecture by the activation
of the C10 - Usage Control, and C2 - Dataflow Router components.

FR5: The system should provide rich search mechanisms across all federated nodes for available datasets and
services

 This FR is addressed by having a centralized metadata repository which can be queried from different
nodes. The metadata about assets is transmitted to the central node, but the assets themselves remain fully in
possession of the providing organization.

FR11: The system should ensure the integrity and authenticity of the smart contracts transactions signed by
its users

 This FR is central to the concept of trust as understood in this project. Every operation in the TRUSTS
platform, onboarding an asset, acquiring one, accessing one, etc., is performed via a sequence of messages as
specified by the IDSCPv2. Each of these messages, which are emitted and received by respective Trusted
Connector instances, is

i) cryptographically signed with an X.509 certificate in control of the message producer and issued by a
centralized certificate authority.

ii) accompanied with a signed, time-sensitive, token certifying the authentication and authorization of
the user who triggered the message (as provided by component C20 - Identity Provider + Key Distribution
System)

iii) recorded by the centralized Smart contract executor which shall, at any time, be queried by the
interested parties to verify the current status of a contract or the sequence of operations pertaining to an asset
they control.

Furthermore, there are functional requirements that have been collected from further specification of the use-
case scenarios treated in WP5. These are summarized below, and are addressed by the way that services and
applications are traded and used in the TRUSTS platform, which is described in detail in the next section.

4.1.1 Functional requirements coming from the preparation for the use case trials

The three use cases that are to be executed in the frame of the TRUSTS project, as specified in Deliverable
D5.1, will make use of several features of the architecture proposed in this document. All three use cases
involve a provider and a consumer of an asset, be it an application or a service. In all three, privately-owned
and potentially sensitive data is utilized, necessitating a careful choice of where different software components
are to be executed, and which parties are to be part of the processing.

© TRUSTS, 2021 Page | 62

D2.6 Architecture design and technical specifications document I

There are several components which are to be deployed as stand-alone applications to be executed on the
consumer’s premises, and which come accompanied with all necessary data. There are the AML Risk
Assessment Application (UC1), AML Transaction Monitoring Application (UC1), Insights for Banks Application
(UC2) and Deanonymization Risk Application (UC2). The fact that they are to be deployed in the premises of
the consumer, follows from the fact that they all take as input private or sensitive data, which the different
consumers hold the right to, but are not necessarily allowed to transmit. In these cases, what the TRUSTS
platform provides is the ability to deploy applications easily, entering and enforcing contractual agreements for
their use, and making these applications easily discoverable by different consumers. Finally, the possibility to
certify the functioning of applications is technically possible, and would remain an option for any future TRUSTS
operator.

Three further UC-specific components are to be deployed as services which are to be executed on the
provider’s premises, and accessed in a controlled and metered manner by the consumer. These are the AML
Screening Service (UC1), the AroTRON NBA service (UC3) and the AroTRON Chatbot Model service (UC3). The
first one makes use of data for which the provider has a license allowing use but not redistribution, which
necessitates that it remains at all times in their premises. The other two are computationally demanding
services which are executed only once (or a few times) by the consumer, who is primarily interested in the
output of the service.

Finally, an interesting combination of application, service, and dataset is to be deployed as part of the PSI
Application by UC2. In this case, three parties are involved: one providing an application, one providing a
dataset, and one consuming a service based on the dataset. For reasons of privacy (as described in detail in
Deliverable 5.1), the parties involved in dataset exchange must not have access to the totality of the other’s
data. In brief, this use-case involves five steps: 1) the offering of an application in the TRUSTS platform; 2) the
acquisition of this application by the dataset provider; 3) the creation of a service using this application and the
dataset by the dataset provider; 4) the acquisition of the application by the dataset consumer; 5) the
consumption of the service created in step 3 by the dataset provider by means of the application previously
acquired.

4.1.2 Handling of portable applications on the TRUSTS Platform

Applications are software components which will be executed in the premises of the consumer, without any
data leaving their network. Their installation and execution by the consumer may be the subject of contractual
agreements, and the TRUSTS platform will provide technical means to enforce some of their provisions.

Application providers will onboard their applications by means of the Corporate Interface in their node. The
operation of onboarding involves providing the metadata for the application, the necessary files for it’s
configuration and deployment, a machine-readable description of it’s interfaces, and the directions to a locally
(within the provider’s node) available application image. The Corporate Interface will create the appropriate
bundle file and advertise its metadata to the Central Node, which shall include it into the catalog.

When a consumer searches in their own Corporate Interface or in the Platform Interface, they will see a
description of the application and, upon entering a contractual agreement, will be able to download, on their
premises, the corresponding bundle. Then, this bundle will be decompressed and the application image will be,

© TRUSTS, 2021 Page | 63

D2.6 Architecture design and technical specifications document I

subject to verification of identity and contract, pulled from the appropriate image repository into the
consumer’s node. The messages mediating this pull operation will be inspected and acted upon by the
provider’s Usage Control component, which will in turn consult the central Smart contract executor and,
optionally, execute any relevant smart contract operations in the Smart Contract Executor deployed there.

Once the application image has been pulled, the configuration and deployment instructions contained in the
bundle will be executed and the application will be made available from within the consumer’s corporate
network, to be used either directly by human users or by other, pre-existing applications.

Optionally, if the application exposes an HTTP interface adequately described (see below), the provider can
choose to make their application accessible only through the Services Consumer Adaptor deployed in the
consumer’s node. This would enable a fine-grained metering of application usage, and execution of smart
contract operations upon every request.

4.1.3 Handling of services on the TRUSTS platform

Services are software components which are executed on the provider’s premises. The access to these services
by the consumer may be the subject of contractual agreements, and the TRUSTS platform will provide technical
means to enforce some of their provisions.

Services will be served by components installed by the provider according to their respective technical
guidelines. This will allow, for example, pre-existing applications already deployed to be made available
through TRUSTS, regardless of the operating system on which they are deployed, as long as they provide HTTP
interfaces.

The service provider will also be responsible for providing a machine readable description of the service (for
example, using the OpenAPI 3 specification). This file, along with the metadata necessary to describe the
service (e.g. name, description, example input), will constitute a bundle which will be assembled by the
providers Corporate Interface as part of the onboarding process. The metadata will be then forwarded to the
central metadata repository, which will allow it to be discovered by other nodes or through the Platform
Interface.

When a consumer acquires the service, they will receive in their corporate node the corresponding bundle. This
bundle will be processed by the Dataflow Router in order to make the service accessible via the TRUSTS
platform.

A user in the consumer’s network will then access the different endpoints of the service by making HTTP
requests to the Services Consumer Adaptor deployed in their node, attaching to each of them an
authentication token. These requests can, if the business model so requires, be logged into the Smart contract
executor from this point. The requests will be forwarded to the provider’s node, where the Usage Control
component will check the accompanying token for authorization, possibly consulting with the Smart contract
executor about the status of the contract. If deemed adequate, the request will be forwarded to the
component in the Provider’s infrastructure which is actually serving the service. The resulting access will be

© TRUSTS, 2021 Page | 64

D2.6 Architecture design and technical specifications document I

notified to the Smart Contract Executor, in order to trigger any action specified in the corresponding smart
contract.

4.2 The role of the components in enabling trust between participants
The Trusted Connector component allows for verification of the origin of any messages received. This means
that the provider of an asset can be sure that any request they receive comes from within the TRUSTS platform
and, furthermore, can reliably identify the originating node and the user within. With the architecture
presented here, a provider can use these assurances to evaluate, on their premises, the contractual validity of
a request. In particular:

1. Application providers will transfer applications only after the requesting messages have been validated
by the smart contract executor. Thus, the provider can rest assured that only contractually-valid
transfers of their applications take place.

2. If the application is to be made accessible only through the consumer’s Services Consumer Adaptor
(only possible in the case of applications providing adequately described HTTP interfaces), then the
application provider can request from the smart contract executor a detailed log of all access to the
application. Importantly, the application provider must develop in their application the security
mechanism to ensure that only requests which are accompanied by an adequately signed authorization
token are served. In this case, it is possible to utilize fine-grained contracts on an application, for
example, based on the number of requests.

3. Services exposed by a provider will be configured to only accept requests being forwarded to them by
the node’s Trusted Connector. In this case, the node’s Usage Control component will evaluate the
request against information in the smart contract executor. Thus, the provider can rest assured that
only contractually-valid requests are served.

4. The requests done to a service are logged also by the consumer’s node (in particular, by the Services
Consumer Adaptor). This disallows incorrect claims by the provider regarding access to the service, as
the smart contract executor holds records from both parties regarding access operations.

5. Dataset providers, likewise, can rest assured that all requests served are contractually valid, since only
then will they be forwarded to any serving component (e.g., the Corporate Interface).

6. All signatures and tokens that have been described will be forwarded to the destination component,
thus enabling any provider to check and log transactions on their own terms. Likewise, all certificates
used to issue these signatures and tokens will be known to all participants, as part of the organization
onboarding process.

Importantly, the metadata of all assets will include signatures (hashes) of all traded assets (application images,
service descriptions, datasets), which will allow the consumer to rest assured that the received asset has not
been tampered with. These signatures can, furthermore, be compared directly with those included in the
provider’s node catalog, thus reducing the need for trusts in the TRUSTS operator.

© TRUSTS, 2021 Page | 65

D2.6 Architecture design and technical specifications document I

4.3 Planning for the evolution of the architecture with agile methods
The architecture of the TRUSTS platform represents the blueprint for the results of the TRUSTS project. As
such, it also represents the foundation for instances of the TRUSTS platform which will be provided by one or
more TRUSTS operators after the duration of the project.

The architecture has to accommodate the requirements and priorities of many different stakeholders. As such,
it is prudent to plan for the evolution of the architecture during the project. In the TRUSTS project, we will use
agile methods to facilitate multiple iterations of the architecture. In particular, we will use the concept of a
“Minimum Viable Product (MVP)” to involve relevant stakeholders in the evolution of the platform, at different
points in time during the project.

A Minimum Viable Product [4, 5] can be thought of as a version of a product with just enough features to be
usable by early customers who can then provide feedback for future product development.

In TRUSTS, each MVP version should be seen as a clearly specified hand-off point, at which a specific
combination of platform components in specific versions is released to all partners who are working on the
implementation of use cases and on the implementation of privacy enhancing technologies. These partners are
the internal customers of the MVP within the TRUSTS project.

Every MVP version will be released to the internal customers together with a description of how to perform
technical tests. The results of these technical tests will then be used as input for the next version of the MVP.

The goals for the MVPs are characterized by four dimensions: integration of APIs, functional integration,
operational integration and quality control.

Integration of Application Programming Interfaces (APIs):

So-called “software mock objects” can be used to implement and test APIs in isolation, independent of the
progress of the implementation of the API. This can be used to distribute the work on components which will
be connected to the APIs, and for integrating the APIs of existing software with newly developed software. This
dimension is also important for validating the interplay between components which are run on different hosts.

The testing of APIs will result in a better understanding of the component view on all software artifacts in the
project and will enable better communication between the technical experts in the project. In addition, it
allows for testing of essential and shared infrastructure software components which are reused from either the
IDS or DMA. Finally, it will allow for testing of deployment mechanisms.

Functional integration:

The testing of functional integration is concerned with the details of the interplay between components on the
level of data and functions. Instead of testing APIs, functional testing is concerned with testing if components

© TRUSTS, 2021 Page | 66

D2.6 Architecture design and technical specifications document I

can correctly handle incoming data and return the correct kind of output data. In addition, any side effects or
error conditions which can appear, have to be accounted for.

The testing of functional integration benefits from a complete documentation of the data models used by all
data stores in the project. It is also desirable to connect all implemented functions to realistic data sources. In
addition, functional integration is very important to confirm that components developed by different project
partners are able to interact in a correct way, and that the handling of errors in the input data allows resilient
operation of the platform components.

Operational integration:

The testing of operational integration is concerned with providing functionality in a way which simulates the
envisaged customers of the platform. A prerequisite of this is that the platform components are able to
communicate with each other via the correct APIs, and that functions of components are able to handle input
and output data correctly and to be resilient towards errors. Operational integration is also concerned with the
user experience and the way in which the overall functionality of the platform is communicated and packaged
to the user.

As a result of operational integration, all aspects of the platform which concern the TRUSTS operator during
and after the project will be tested. In addition, the security mechanisms of the platform, including its
authentication services and the usage control mechanisms will be tested. Finally, operational integration allows
non-technical experts to confirm cross-cutting requirements, such as those stemming from decisions about
business models and innovation specifications.

Quality control:

This dimension of the MVPs is concerned with ensuring that all artifacts (i.e., software components, data
models, user interface, documentation) of the platform are mature and of a high quality level. This dimension
is concerned with how an artifact is perceived by a potential end user. Important considerations include the
usefulness of documentation and the design of the different user interfaces of the platform. However, it also
includes factors of how the platform is perceived which have a technical aspect. In particular, how the speed
and throughput of the platform is perceived. In addition, high level questions, such as the usefulness of the
platform for common tasks of potential end users should be considered.

© TRUSTS, 2021 Page | 67

D2.6 Architecture design and technical specifications document I

5 Conclusions and Next Actions

This deliverable summarizes the activities in task 2.4. “Architecture design and technical specifications” and is
the first of two versions of this deliverable. It documents the blueprint for the technical results of the TRUSTS
project. The technical specifications provide the details which are required by technical experts in order to
instantiate the platform infrastructure and built on top of it or to extend it with their own components,
services and applications.

The architecture of the TRUSTS platform has to accommodate the requirements and priorities of many
different stakeholders inside of the project. In order to accommodate this, we collected architectural
requirements from relevant parties. First, we collected requirements for the architecture from the initiatives
on which the TRUSTS platform is based, which are the Data Market Austria (DMA), International Data Spaces
(IDS). In addition, we collected architectural requirements from the GAIA-X initiative, as future compatibility
with Gaia-X is of strategic importance to the TRUSTS platform. We expect GAIA-X to set important impulses for
the data economy in Europa by e.g., communicating with important groups of stakeholders to set the agenda
and by setting standards for technical and organizational issues, such as certification.

Then we collected architectural requirements from the different technical participants of the project, grouped
by areas of concern. We collected such requirements related to: smart contracts; interoperability of data
marketplaces; data governance; platform development and integration; brokerage and profiles for users and
corporates; privacy enhancing technologies; anonymization and de-anonymization; as well as from the usage of
CKAN software. We collected a total of 57 architectural requirements, which we grouped into 23 architecture
requirement summaries.

Based on the architectural requirements, we describe a software architecture. We give an overview of the
architecture, then we specify which software components are needed in order to address the collected
functional and architectural requirements. Our proposed architecture contains 24 components. We provide
two tables which show how the components are connected to the functional requirements and the
architecture requirement summaries.

Finally, we describe the design considerations of the architecture to document the aspects of the architecture
which are represented in the interplay of multiple components, instead of being implemented in a single
component. These aspects include: the enabling of trust between participants using the platform; the
functionality related to the use case trials; the handling of both portable applications and services on the
TRUSTS platform; and the planning for the evolution of the architecture with agile methods.

For the second version of this deliverable, the focus will be on iterating the architecture based on feedback
from the use case partners and from the non-technical project partners. Together with the use case partners,
the technical environment for testing the use case trials will be defined in multiple, iterative versions.
Complementary to that, the technical impact of the requirements identified in the area of business models for
data marketplaces and the legal requirements will be investigated and will be addressed, if necessary, through
updates of the architecture. In addition, the project partners with a technical perspective will refine the
architecture and document additional technical specifications based on their implementation experiences. The
results of this task will also provide input for selecting the results of the project, which will be used as starting
points for standardization efforts with relevant external stakeholder organizations, by the standardization
experts in the project.

© TRUSTS, 2021 Page | 68

D2.6 Architecture design and technical specifications document I

6 References

[1] M. Traub, et al., "Broker and Assessment Technology Specification and Development Road", Data Market
Austria, May 2017.

[2] B. Otto, et al., "Reference Architecture Model Version 3.0", International Data Spaces Association, April
2019.

[3] G. Eggers, et al. "GAIA-X Technical Architecture", Federal Ministry for Economic Affairs and Energy (BMWi),
June 2020. Accessed via: https://www.data-infrastructure.eu/GAIAX/Redaktion/EN/Publications/gaia-x-
technical-architecture.pdf?__blob=publicationFile&v=5

[4] V. Lenarduzzi, D. Taibi, "MVP Explained: A Systematic Mapping Study on the Definitions of Minimal Viable
Product", Euromicro SEAA, 2016.

[5] J. Münch, et al. "Creating minimum viable products in industry-academia collaborations." International
Conference on Lean Enterprise Software and Systems. Springer, Berlin, Heidelberg, 2013.

© TRUSTS, 2021 Page | 69

D2.6 Architecture design and technical specifications document I

7 Annex: Smart Contract FR revision

Smart contracts are one of the areas of concern for the TRUSTS architecture. The work in relation to this
concern is being led by Fraunhofer ISST. The main goal with regards to this concern is to develop the necessary
concepts for using smart contracts in the context of the European Data Market delivered by the TRUSTS
project. This includes in particular the technical foundations for ensuring the integrity and authenticity of such
contracts as well as the analysis of the legal challenges brought about by smart contracts, such as issues of
validity, enforceability, and interpretation. Related to this, the technical challenges and the legal issues
regarding the fact that smart contracts are written in executable code instead of natural language, will be
examined by the partners with legal expertise in the project.

The result of this work is a comprehensive concept document related to all the aspects of the above paragraph.
Additionally, a demonstrator is being developed by Dell. The demonstrator consists of a blockchain instance
which is using the Hyperledger Fabric technology. Thus it is possible to execute smart contracts in this instance.
The demonstrator will also connect to external payment systems. The demonstrator is logged as architecture
component C24 - “smart contract executor”.

Based on the project work of the partners with expertise related to smart contracts, the following suggestions
for revising the related functional requirements (FRs) in the future are made. These are the FRs which are
grouped under the label of “Purchasing and Billing”. The next version of the deliverable which collects the
functional requirements is D2.3 “Industry specific requirements analysis, definition of the vertical E2E data
marketplace functionality and use cases definition II”.

Revision suggestions for the functional requirements grouped as “Purchasing and Billing”:

● FR10: “The system should provide smart contract mechanisms as a validation means of sellers/buyers
agreements.”

○ No change is suggested.
● FR11: “The system should ensure the integrity and authenticity of the smart contracts signed by its

users.”
○ Change to: “The system should ensure the integrity and authenticity of the smart contract

transactions signed by its users”.
○ Explanation: The reformulation of FR11 is to increase semantic accuracy by encompassing the

transaction operation.
● FR12: “The system should provide a human friendly representation of smart contracts (e.g., natural

language).”
○ Change to: “Smart contracts in the system should be accompanied by a human friendly

representation (i.e natural language).”
○ Explanation: The current description could imply the automatic derivation of human-readable

text from executable smart contract code.
● FR13: “Signed smart contracts should be legally valid, enforceable and interpretable.”

○ Change to: “Mechanisms to make signed smart contracts be legally valid, enforceable and
interpretable will be investigated”.

○ Explanation: The current form seems infeasible due to the necessary procurement of legal
contracts to underpin the smart contracts.

© TRUSTS, 2021 Page | 70

D2.6 Architecture design and technical specifications document I

● FR14: “The system should encompass mechanisms for keeping transactions performed ensuring that
they cannot be infringed.”

○ Change to: “The system should encompass mechanisms for keeping performed transactions
from being infringed”

○ Explanation: The new version rearranges the words to clarify the meaning of the sentence.
● FR15: “The system should provide billing mechanisms for enabling consumers to pay providers

according to the agreed smart contract.”
○ Change to: “The system should provide the ability to connect to billing mechanisms for

enabling consumers to pay providers according to the agreed smart contract.”
○ Explanation: The current wording suggests that TRUSTS will provide a component which

implements a payment mechanism. Instead, as reflected by the new wording, TRUSTS will
provide a component to connect to existing payment mechanisms.

● FR16: “The system must provide alternative and flexible pricing models taking into consideration the
diversity of the available datasets and services.”

○ No change is suggested. However, the fulfillment of this functional requirement requires the
expertise from most partners in the project and goes beyond expertise in the area of smart
contracts.

● FR17: “The system should provide brokerage mechanisms for addressing the offerings and demands of
the hosted datasets and services.”

○ No change is suggested. However, the fulfillment of this functional requirement requires the
expertise from most partners in the project and goes beyond expertise in the area of smart
contracts.

