

This project has received funding from the European Union's Horizon 2020
research and innovation programme under grant agreement No 871481

Ise

D3.7 Data Governance, TRUSTS
Knowledge Graph I

Authors: Victor Mireles, Stefan Gindl, Sotiris Karampatakis, Michael Boch

Additional Information:

June 2021

D3.7 Data Governance, TRUSTS Knowledge Graph I

© TRUSTS, 2021 Page | 2

TRUSTS Trusted Secure Data Sharing Space

D3.7 Data Governance, TRUSTS Knowledge
Graph I

Document Summary Information

Grant Agreement
No

871481 Acronym TRUSTS

Full Title TRUSTS Trusted Secure Data Sharing Space

Start Date 01/01/2020 Duration 36 months

Project URL https://trusts-data.eu/

Deliverable D3.7 Data Governance, TRUSTS Knowledge Graph I

Work Package 3

Contractual due
date

30/06/2021 Actual submission date 30/06/2021

Nature Report Dissemination Level Public

Lead Beneficiary Semantic Web Company

Responsible Author Victor Mireles, Semantic Web Company

Contributions from Stefan Gindl, Michael Boch, Research Studios Austria

Sotiris Karampatakis, Artem Revenko, Martin Kaltenböck, Semantic Web
Company

Nikos Fourlataras, Relational

George Margetis, FORTH

Ahmad Hemid, Fraunhofer IAIS,

Diether Thelier, KNOW Center

https://trusts-data.eu/

D3.7 Data Governance, TRUSTS Knowledge Graph I

© TRUSTS, 2021 Page | 3

Revision history (including peer reviewing & quality control)

Version Issue Date
%

Complete1
Changes Contributor(s)

v1.0 21.04.2021 1% Initial Deliverable Structure Victor Mireles

v2.0 18.06.2021 70% Internal Version Review Victor Mireles

Stefan Gindl

Sotiris Karampatakis

Nikos Fourlataras

George Margetis

Diether Thelier

v3.0 29.06.21 95% Revisions Victor Mireles

Stefan Gindl

Ahmad Hemid

Sotiris Karampatakis

Artem Revenko

v4.0 30.06.21 100% Final Version Martin Kaltenböck

Disclaimer

The content of the publication herein is the sole responsibility of the publishers and it does not necessarily
represent the views expressed by the European Commission or its services.

While the information contained in the documents is believed to be accurate, the authors(s) or any other
participant in the TRUSTS consortium make no warranty of any kind with regard to this material including, but not
limited to the implied warranties of merchantability and fitness for a particular purpose.

Neither the TRUSTS Consortium nor any of its members, their officers, employees or agents shall be responsible
or liable in negligence or otherwise howsoever in respect of any inaccuracy or omission herein.

Without derogating from the generality of the foregoing neither the TRUSTS Consortium nor any of its members,
their officers, employees or agents shall be liable for any direct or indirect or consequential loss or damage caused
by or arising from any information advice or inaccuracy or omission herein.

1 According to TRUSTS Quality Assurance Process:

1. to be declared

D3.7 Data Governance, TRUSTS Knowledge Graph I

© TRUSTS, 2021 Page | 4

Copyright message

© TRUSTS, 2020-2022. This deliverable contains original unpublished work except where clearly indicated
otherwise. Acknowledgement of previously published material and of the

work of others has been made through appropriate citation, quotation or both. Reproduction is authorised
provided the source is acknowledged.

D3.7 Data Governance, TRUSTS Knowledge Graph I

© TRUSTS, 2021 Page | 5

Table of Contents

1 Executive Summary 9

2 Introduction 11

2.1 Definitions 12

2.2 Mapping Projects’ Outputs 13

2.3 Deliverable Overview and Report Structure 15

3 Use of a Knowledge Graph in TRUSTS 16

3.1 Discovering assets 16

3.2 Node operation 19

3.3 Automatic creation of routing rules 20

3.4 Installation of applications 22

3.5 Consuming of services 23

3.6 Contracting 23

3.7 Usage Control 27

3.8 Interoperability with third party data initiatives 28

4 The IDS Information Model 30

4.1 DCAT 33

4.2 ODRL 36

4.3 DCMI 37

5 The TRUSTS Information Model 39

5.1 Asset 41

5.2 Configuration 45

5.3 Connector 47

5.4 Node 48

5.5 Contracts 49

5.6 External Sources 51

6 Conclusions and Next Actions 53

7 References 54

D3.7 Data Governance, TRUSTS Knowledge Graph I

© TRUSTS, 2021 Page | 6

List of Figures

Figure 1: Routing 22

Figure 2: Taxonomy of datamarkets 31

Figure 3: IDS1, the three representations of the IDS-IM 32

Figure 4: DCAT 36

Figure 5: ODRL 37

Figure 6: DCMI 38

Figure 7: Dublin Core (DC) 40

Figure 8: Schema 41

D3.7 Data Governance, TRUSTS Knowledge Graph I

© TRUSTS, 2021 Page | 7

List of Tables

Table 1: Adherence to TRUSTS GA Deliverable & Tasks Descriptions 14

Table 2: Metadata entities and Statements in the KG for use by the contracting system 25

Table 3: Statements included in contracts that must be acted upon by other components 26

Table 4: Metadata entities and Statements 28

Table 5: Ontos 33

Table 6: Asset, Classes of entities 42

Table 7: Asset, Relationship between entities 43

Table 8: Asset, Properties of entities 43

Table 9: Configuration: Classes of entities 46

Table 10: Configuration: Relationships between of entities 47

Table 11: Configuration: Properties of entities 47

Table 12: Connector: Classes of entities 48

Table 13: Connector: Relationship between entities 48

Table 14: Connector: Properties of entities 49

Table 15: Node: Classes of entities 49

Table 16: Node: Relationship between entities 49

Table 17: Contracts: Classes of entities 50

Table 18: Contracts: Relationships between entities 51

Table 19: Contracts: Properties of entities 51

Table 20: External Sources: Classes of entities 52

Table 21: External Sources: Relationships between entities 52

Table 22: External Sources: Properties of entities 53

Table 23: Use of namespaces 39

D3.7 Data Governance, TRUSTS Knowledge Graph I

© TRUSTS, 2021 Page | 8

Glossary of terms and abbreviations used

Abbreviation / Term Description

EOSC European Open Science Cloud

OWL Web Ontology Language

RoD Registry of Datamarkets

RDF Resource Description Framework

KG Knowledge Graph

IDS International Data Spaces

IDS-IM International Data Spaces Information Model

DMA Data Market Austria

D3.7 Data Governance, TRUSTS Knowledge Graph I

© TRUSTS, 2021 Page | 9

1 Executive Summary

The TRUSTS project aims to develop a platform for trading data and data services in a trustworthy and
reliable manner, which will enable a data economy in which privacy and security are at the forefront. This
platform will consist of a set of nodes, each operated by a different organization which will remain in full
control of their data assets. The nodes, in turn, will be executing a set of common components which will
allow for transactions that will strictly adhere to any contractual agreements between trading parties, will
be fully auditable, and will enable a set of innovative privacy-preserving and data-ownership respecting
business models. It will result in enhancements to the European data economy, by enabling new types of
transactions to take place, and open the door for restricted and private data to be monetized with strict
adherence to GDPR and other relevant regulations.

The architectural design of the TRUSTS platform requires the orchestration of different components, which
in turns necessitates the exchange of information in an unambiguous and consistent manner. This is
especially important since the TRUSTS platform has as its objectives the interoperability of different
existing data infrastructures, some of which are operated by the project partners or their customers, and
some of which are operated by third parties. In particular, metadata about assets, computing resources,
participants and policies has to be exchanged for the platform to satisfy its functional requirements. The
collection of this metadata will be termed the TRUSTS Knowledge Graph, and the specific organization of
said graph is termed the TRUSTS Information Model.

During the first 18 months of this project, the experience of the different partners was put together to
refine functional and architectural requirements and to put together a first prototypical implementation
of the TRUSTS platform. From these experiences, the needs for metadata exchange were further specified
and put to test, in particular those which are specific of the technologies that different partners bring into
the platform. Furthermore, the continued maturation of metadata standards within the IDS and the global
metadata management and semantic web communities, has provided a solid foundation for the definition
of the TRUSTS Information Model. This combination of practical hands-on experience in connecting the
different existing components, and the contributions from academic and standardization work is what
serves as background for this deliverable.

This document reports on the different uses that will be done of the TRUSTS Knowledge Graph, the specific
metadata requirements of each of these as well as related metadata schemata. Finally, it provides the first
version of the TRUSTS Information Model, which is to guide the implementation of mechanisms of
interaction between components, and of interoperability with external data providers.

In brief, the TRUSTS Information Model is a formalization of the data-trading domain in which TRUSTS is
expected to play central role. It provides concise and actionable definitions of basic notions such as
Dataset, Application, Service, Contract, Node, Participant which constitute the everyday vocabulary of the
project, in particular of the implementation teams. The exact properties that said entities can have, as well
as the relationships that can occur between them are also described in detail. These definitions have been
informed by the specific requirements of the platform, and this document provides a guide on what the
effect of these definitions can be expected to be in the different components.

It is envisioned that throughout the remainder of the project, this document will act as a reference during
implementation of the software artefacts necessary for the interconnection of the different TRUSTS
platform components. With this guide, the distribution of work across the different teams of the project
will be facilitated, and future developments (including that done by third parties wishing to interact with
the Platform) will greatly benefit from clear and well-defined semantics. Finally, it is expected that the

D3.7 Data Governance, TRUSTS Knowledge Graph I

© TRUSTS, 2021 Page | 10

public nature of this deliverable, along with the proper dissemination activities, will help communities and
projects facing similar challenges to reuse the solutions proposed so far.

Here we report on the first version the TRUSTS Knowledge Graph and its corresponding Information
Model. This first version will be subject to test in the upcoming months and will also be discussed in the
wider metadata and semantic web communities. The result of these processes, as well as concrete metrics
on the performance of the Knowledge Graph will be presented in the second version of this deliverable
towards the end of the project lifetime.

D3.7 Data Governance, TRUSTS Knowledge Graph I

© TRUSTS, 2021 Page | 11

2 Introduction

Metadata is understood as a set of statements about entities in a system. In the TRUSTS platform, the
relevant entities are, for example, assets, participants, nodes, contracts or topics. Statements about these
are included in the metadata in order to enable several functionalities, and to make sure that the
components responsible for them have a common understanding of the state of the entities in the
platform. In any given time, the collection of all metadata in the TRUSTS platform constitutes a Knowledge
Graph[1], since it satisfies the following conditions:

i) Entities of the TRUSTS platform correspond to nodes in the graph, each of which has a unique
and fixed identifier

ii) Relationships between entities, each of which has agreed-upon semantics that are understood
by all components producing and consuming the metadata, correspond to the edges of the graph.

iii) Statements about entities are represented by sets of edges, which can be stored according to
a well-defined schema whose organization allows properly equipped systems to make queries in
an efficient manner to satisfy their respective functionalities.

iv) It is possible to link some of the entities with those of external sources of knowledge in order
to enrich metadata and enable further operations on it.

The choices of what constitutes metadata, how it is to be represented and transmitted, how identifiers
are going to be assigned, and what are the specific semantics of the different relations, are all informed
by the functional requirements of the TRUSTS platform. These definitions, and subsequent operations on
metadata are not made for the purpose of organization in itself, but rather, to enable the TRUSTS platform
to carry out the tasks that it is required to, and to reduce ambiguity or redundancy of the information
exchanged for these purposes. The operations of the different components that constitute the TRUSTS
platform are to be parametrized using the TRUSTS Knowledge Graph, and any change of state of the
platform which is to have effects on other components is to be reflected in the graph as well.

Since the topic of metadata management is one that is encountered in many situations, it is no surprise
that a large amount of work has been done in the past towards definitions of metadata schemata, their
precise semantics, and the technical procedures surrounding them. In particular, as part of the
International Data Spaces initiative, a comprehensive metadata model was developed, called the IDS
Information Model (IDS-IM). This model, in turn, builds upon the experiences of several decades of the
metadata management [4,5], policy representation[3] and archival communities[6]. In the TRUSTS project,
additions and modifications to this model are proposed.

This document describes the first version of the metadata model to be used in the TRUSTS platform. Since
the choice of the model is driven by the functional requirements and the architectural features of the
platform, these are analyzed in terms of their metadata requirements. During this analysis, the suitability
of the different components of the IDS-IM is also considered, and points for improvement or extension
are identified. With these, an overall picture is presented of how the Knowledge Graph containing the
metadata of the TRUSTS platform is to be organized, updated, and exploited by different components. This
final, summarizing exposition builds heavily upon many aspects of the IDS-IM and other initiatives, of
which a summary is also included in order to make this a self-contained reference document for the
development of the first versions of the TRUSTS platform.

D3.7 Data Governance, TRUSTS Knowledge Graph I

© TRUSTS, 2021 Page | 12

2.1 Definitions

TRUSTS platform

 The set of interconnected nodes, and the components running within them, that support the
functional requirements of the TRUSTS project.

TRUSTS resources

 The set of entities whose description is relevant for the operation of the platform. In particular, this
includes assets (datasets, applications, services), nodes, deployed components, organizations. The
phrase “TRUSTS resource” refers to the actual, concrete entity.

Metadata

 Any description about resources in the TRUSTS platform. This document is devoted to describing
which of these descriptions are relevant and how they are organized and transmitted.

Metadata schema

 A specification of how metadata for one or more classes of resources is to be recorded. It
enumerates the list of metadata for a given resource and the type that said metadata should have
(e.g. string, integer, controlled vocabulary).

Controlled vocabulary

 An organized set of concepts with fixed identifiers, each of which can have one or more labels for
human consumption. In this document, a controlled vocabulary is assumed to be conformant to the
SKOS2 specification.

Information Model

 A specification of the different classes of TRUSTS resources that are to be considered, the metadata
schemata that are to be adopted for each of them, and the relations that can hold among them. An
information model specifies a set of valid resources, statements about said resources and an
interpretation of said statements that can be operationalized. In this document, we consider an
information model to be described using the Ontology Modeling Language OWL3 alongside a natural
language description that is sufficient for interpreting, constructing and processing statements that
conform to this specification.

Knowledge Graph

 A graph that contains nodes corresponding to TRUSTS resources and that i) conforms to a given
Information Model, ii) represents the state of a set of resources, iii) can be stored and queried
according to well-defined methods, and iv) can be linked with other such graphs in order to enrich
the meaning of the statements encoded in its edges.

2 https://www.w3.org/TR/skos-reference/ Last accessed June 22, 2021
3 https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/ Last accessed June 22, 2021

https://www.w3.org/TR/skos-reference/
https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/

D3.7 Data Governance, TRUSTS Knowledge Graph I

© TRUSTS, 2021 Page | 13

2.2 Mapping Projects’ Outputs

Table 1: Adherence to TRUSTS GA Deliverable & Tasks Descriptions

TRUSTS Task Respective
Document Chapter(s)

Justification

T3.4 Data
Governance :
Metadata,
Lineage and
Semantic
Layer

This task provides one of the
backbones of TRUSTS to ensure
a clear data governance model
in the form of

a TRUSTS Knowledge Graph
that includes models
(taxonomies, ontologies),
metadata of all TRUSTS

objects (data, services, tools,
users, etc.), and lineage
information (the information
about provenance as well

as the lifecycle of a dataset,
service or software tool et al.)
that can be used for
interoperability (T3.3), Smart

Contracts (T3.2), Search and
Brokerage (T3.5 and 3.6) and
above. This Knowledge Graph
will be realised

in the form of a semantic layer
for TRUSTS that connects all
objects in the system, and
provides context

and meaning for TRUSTS
mechanisms and features.

Whole Deliverable This document is one of the
main outputs of T3.4, as it
is here where the metadata
layer is formally specified.

T3.3 Data
marketplaces
interoperabili
ty solutions

Based on the findings of D2.1:
Definition and analysis of the
EU and worldwide data market
trends and

industrial needs for growth,
and by analysing existing
interfaces and standards, and
even developing new

relevant standards (see T7.4
Standardisation), the

Chapter 3, Section 8.
Chapter 5, Sections: 1
and 6

Semantic Interoperability is
an important aspect of
interoperability in general.
This document contains the
solutions, from the
metadata point of view,
that TRUSTS proposes for
interoperability with
external sources. The
research into the
requirements of
interoperability undertaken

D3.7 Data Governance, TRUSTS Knowledge Graph I

© TRUSTS, 2021 Page | 14

interoperability solution for
TRUSTS will be designed in

this task. This means the
definition of interfaces to
ensure interoperability with
other industrial data

marketplaces. In addition
interoperability solutions with
the European Open Science
Cloud (EOSC) will be

evaluated and implemented
where possible.

in T3.3 have greatly
informed this document.

T3.5 Platform
Development
& Integration

Based on the outcomes of T2.4,
this task focuses on the
implementation, testing and
deployment of the

TRUSTS platform components.
Prior to release of D2.4A, this
task is expected to collaborate
with T2.1, 2.2

and 2.3 in order to prepare a
smooth start of development in
M6. The task makes use of
infrastructure

provided by T3.1. Assets from
existing platforms (IDS, DMA)
will be reused, enhanced and
adapted to

cover the specifications of T2.4.
This gives the task a head start
by building on established and
proven technologies. While,
from an implementation point
of view, this task covers
general functionality (e.g.,

dataset and participant
registrations), T3.2, 3.3 and 3.4
extend this functionality by
providing specific state-

of-the-art implementations
that address the TRUSTS
objectives. To that en

Chapter 3, Sections 1-
7

Metadata exchange is
necessary for the
integration of the different
components that constitute
the platform. Furthermore,
the TRUSTS-IM proposed in
this document is greatly
informed by the
implementation activities
taken so far in the project.

TRUSTS Deliverable

D3.7 Data Governance, TRUSTS Knowledge Graph I

© TRUSTS, 2021 Page | 15

D3.7 Data Governance, TRUSTS Knowledge Graph I

The deliverable contains the definition and specification of the Semantic layer, its utilized taxonomies,
ontologies and metadata schemata. In addition, it elaborates on how the semantic layer supports the
functionality of the TRUSTS platform. D3.4B is a revised and updated version of D3.4A, covering the
final state of semantic technologies in TRUSTS (including all related software components).

2.3 Deliverable Overview and Report Structure

The contents of this document are informed by the developments that have taken place throughout the
project. In particular, Work Package 2 has gathered functional and architecture requirements which, in
turn, influence the different types of metadata that need be exchanged within the platform. Task 3.3 has
been the venue for ample discussion and experimentation with respect to interoperability, the results of
which have been included into this deliverable. In particular, the contents of Chapter 5 section 6; and of
Chapter 3 section 8, are the result of work from T3.3. Task 3.5 which is in charge of the integration of the
platform has been the venue for the technical exploration which has informed Chapter 3 sections 1 to 5.
Finally, the contents of Chapter 3 sections 7 and 8 is informed by the work of task 3.2.

Chapter 3 presents the different uses that will be done of the TRUSTS knowledge graph. For this, different
functionalities are explained in detail and in accordance with the architecture of the TRUSTS platform, and
their respective metadata requirements are identified.

Chapter 4 presents a summary of the metadata models on which the TRUSTS metadata model is built
upon. Special focus is given to the IDS-IM which serves as the basis of this work. After this presentation,
limitations that have been identified are discussed.

Chapter 5 presents the enhancements and modifications that have been made to the IDS-IM. This chapter
and the previous should constitute a reference for the development of the first versions of the TRUSTS
platform.

Chapter 6 discusses the different technical developments required for creating, updating and exploiting
the TRUSTS Knowledge Graph.

D3.7 Data Governance, TRUSTS Knowledge Graph I

© TRUSTS, 2021 Page | 16

3 Use of a Knowledge Graph in TRUSTS

In the frame of the TRUSTS project, there are several tasks that will be accomplished using the metadata
contained in the Knowledge Graph (KG). In general, whenever a component requires information
generated by another component it will be able to query the KG for this information. In order to decide
what the schema (Information Model) and contents of this KG should be, we first analyze what uses of it
should be made, in a sense, to gather the functional requirements. With this in hand and based on the
existing IDS-IM described in the next chapter, we introduce in chapter 5 the Information Model that is to
sit behind the KG.

3.1 Discovering assets

Asset discovery is the process by which potential users can navigate a catalog and find assets of their

interest. This is accomplished, according to the TRUSTS architecture described in D2.6, by a combination

of search and recommendation systems. These systems, in turn, require a source of metadata about the

available assets, a catalog. Catalogs can be interpreted as lists of assets which contain sufficient

information for them to be discovered through search and recommendation, and for interested parties to

acquire and subsequently access them by means of other components. It is no surprise that the catalog of

assets plays a central role in the TRUSTS architecture.

Catalogs have long been the subject of metadata schemata definitions, with several of them being widely

deployed. Among them one can find DCAT (part of the IDS-IM and described in detail below), DataCite4

(mostly geared towards research data), Marc215 (specifically designed for libraries) and ISAD-G6 (for

cataloguing archives). There are several common aspects of all such cataloguing schemata which are also

relevant for the TRUSTS platform.

Multi-dimensionality.

Catalogs are best understood as means for searching among collections of assets. However, the search

itself is not the ultimate goal but, rather, the access and (in the case of commercial settings) purchase of

assets. For this reason, cataloguing standards usually include references to out-of-catalogue entities (e.g.,

shelves in a library, providers in a supermarket, etc.) of a variety of natures. The inclusion of such holistic

views in catalogs is operationally exploited by many components, and it is thus no surprise that the asset

catalog plays a central role in the TRUST KG. Additionally, this multi-dimensional description of assets is

essential to realize the FAIR principles.

4 https://schema.datacite.org/, accessed June 2021
5 https://www.loc.gov/marc/bibliographic/, accessed June 2021
6 https://www.ica.org/en/isadg-general-international-standard-archival-description-second-edition, accessed June 2021

D3.7 Data Governance, TRUSTS Knowledge Graph I

© TRUSTS, 2021 Page | 17

Use of controlled vocabularies for properties.

All schemata are collections of predefined properties. In particular, catalog schemata provide a set of

properties for catalogs, catalog entries, groups of entries, etc. These properties come from a controlled

vocabulary, in the sense that a fixed, well-known, immutable set of properties can be assigned to the

different types of entities. Since there are properties which are present in several cataloguing schemata

(such as the title of an item, or the name of the author), it is not uncommon for a standard set of properties

to be used by more than one schema. For example, the metadata properties of the Dublin Core Metadata

Initiative (DCMI, described in detail below) are used by several different schemata. The IDS-IM is one such

schema, and thus the TRUSTS-IM will also make use of these.

Hierarchical organization.

The different entities which make up a catalog are often organized into hierarchies. For example, a catalog

can contain other sub-catalogs, each of which contains a set of records, and each of which contains a set

of concrete elements (e.g., physical books in a library). While this hierarchy can be flexible, in the sense of

an entity having more than one parent, it is very often assumed that it is, at least locally, a strict hierarchy.

This assumption is often exploited in user interfaces, to help querying large collections by diving into more

and more specific sets of entities.

Use of controlled vocabularies as values for some properties.

The set of all the entries of a catalog can be structured in many different ways, one of the hierarchical one

mentioned above. As the breadth of the catalog grows, the structure can be enriched so that, for example,

it is possible to distinguish the entries belonging to a certain category. Likewise, structures distinguishing

entities by their access method, or by their pricing model, can also be exploited by search interfaces to

reduce human effort in search. These structures are best exploited when they are defined by the use of

controlled vocabularies in the values of some of the entry’s properties. Examples of this are subject

headings (such as the Library of Congress Subject Headings7 that one can use to find books in a library

system), or the standardized country names as defined in the ISO-3166 standard.

Multilingualism.

Catalogs of assets contain relatively small amounts of information, as compared to the assets they

themselves catalog. This makes it relatively easy to translate catalog entries, which is also particularly

useful in the case where assets are not necessarily tied to a specific natural language. While

multilingualism is inherited from any controlled vocabularies used, some free-text fields in catalogs must

also support values in different languages. In the case of the TRUSTS platform, which will have nodes

distributed across Europe and belonging to organizations from different economic activities, there should

be no technical impediments to multilingual description of assets.

7 https://www.loc.gov/aba/publications/FreeLCSH/freelcsh.html, accessed June 2021

D3.7 Data Governance, TRUSTS Knowledge Graph I

© TRUSTS, 2021 Page | 18

The properties mentioned above are desirable in all catalogues for supporting asset discovery. Catalogues

possessing said properties support at least the following three important properties:

1. Assigning unique and immutable identifiers to assets.

2. Categorization of assets

3. A distinction of different concreteness levels:

a. The asset which is catalogued, categorized and described, which is the subject of

discovery.

b. Specific presentations of an asset, for example, different formats or different pricing

models, which are the subjects of configuration for, respectively, the access and

contracting mechanisms. These specific presentations can be related to inherent

properties, such as hashes, which help distinguish each of them and assert the authenticity

of an instance in contractual procedures.

c. Specific instances of an asset, those which are subjects of contracts. Given the nature of

digital assets, many copies of an asset can be made, and each purchased individually, but

adequate usage control requires that each be assigned an individual identifier, related to

an individual contract instance.

In the case of TRUSTS, there are particular relations of discoverability of assets with other functional

requirements, as well as specific discoverability needs of the platform. The functional requirements

described in D2.2 require different actions to be taken upon assets: they must be searchable, accessible

and recommendable, they must be subjects of contracts and reviews, access to them must be metered,

and they must be matchable with other assets. Each of these dimensions to one asset impose different

properties on the cataloguing schema, especially since many of them have effects on others (e.g., a user

might want to search only for assets within a certain price range or deployed in one particular geography).

In TRUSTS, the hierarchical organization is also relevant because it shall reflect the federated nature of the

platform. Namely, there will be one central catalog of all assets traded which will be the concatenation of

the catalogs belonging to each organization. This means that all catalogs must include information about

the provider of an asset, as well as metadata about them. In particular, it is necessary to hold information

regarding the regulatory framework in which a given asset provided is embedded (which might or may not

be linked to geographical location), as such knowledge will empower consumers to make more informed

decisions.

Furthermore, the assets traded on the TRUSTS platform present properties different from those in other

catalogs, which might be relevant for discovery. In particular, applications require specific infrastructure

to be executed on, which might be a factor for deciding on purchase. Likewise, services require specific

access mechanisms to be present on the consumer, which must be informed up-front when searching. All

of these technical details must thus be accommodated into the catalogue in order for them to play a role

in search and recommendation applications. Additionally, assets in trusts might be catalogued along with

a “sample”, to increase trust by the consumer and ensure correct technical alignment. Finally, detailed

dataset description is necessary in order to enable dataset-to-service recommendations. All of these

D3.7 Data Governance, TRUSTS Knowledge Graph I

© TRUSTS, 2021 Page | 19

metadata are to be stored in the TRUSTS-KG in order to ensure discoverability and adherence to the FAIR

(findable, accessible, interoperable, reusable) principles, which require a more precise description of

assets, beyond the merely catalographic[10].

3.2 Node operation

The TRUSTS platform is a distributed set of nodes, each operated by a different organization, which

communicate among them to offer and consume assets. Among these nodes there is the Central Node

which contains a copy of all the metadata about assets offered by the other nodes.

Setting up a node requires an initial exchange of information between the new node and the central node.

While not all of it needs to be included into the TRUSTS KG, that which is exploited during the operation

of the node, particularly by different components or by different nodes, will be included as long as it must

not be kept private. Among this is the list of image registries that are to be accessible from the new node

to install TRUSTS components as well as applications acquired later. Likewise, the names of the images

and code repositories that the node operator must pull to deploy their node must be kept in a centralized

location where it can be kept up to date. Likewise, the location of the central node (IP address) must be

kept up to date in the KG, as it will be leveraged by several components, chief among them, the node’s

Trusted Connector.

The Trusted Connector [7] is a software component which acts as gateway to the different components

inside a node. It provides a series of endpoints that different components can connect to in order to send

information to, or receive information from, other endpoints. These communications are all encrypted

and signed, and the Trusted Connector is in charge of verifying the signatures, and their validity in a

dynamic manner. Additionally, the Trusted Connector provides an enterprise bus (based on Apache Camel)

that is used to distribute messages, enabling complex workflows involving several components. Finally,

the Trusted Connector provides functionalities for managing the different containers running on the node.

The operation of each node requires a set of metadata to be recorded and accessed by different

components. A given node must publicize, through the central node, the details regarding access to several

of the services it provides. The details of these can be consulted in D2.6, but it suffices to say here that the

endpoints (ports) which the node’s Trusted Connector exposes must be known to all other participants.

Likewise, in order to enable adequate routing of data within the node, the internal names of the different

components of the node shall be known. In particular, if a node is offering a service, it must be broadcasted

that this service is deployed, within the node, with a particular name. This information, along with the

domain name of the node, will be further propagated to all other nodes.

With this metadata, a node A wishing to access an endpoint E from service X’s port P at node B will do so

by doing HTTP requests to the following address.

D3.7 Data Governance, TRUSTS Knowledge Graph I

© TRUSTS, 2021 Page | 20

http://{connector_A_localname}:{connector_port}/B/X/P/E

These variables (B, X, P, E) are to be retrieved by node A from the centralized metadata repository in order

to construct the above-mentioned URL. The local connector’s name and its port need, in contrast, not be

broadcasted, as they are relevant only to the users of node A from within the same organization.

3.3 Automatic creation of routing rules

When an application, service, or component (hereafter resource) is deployed on a TRUSTS node, routing

in the Trusted Connector should be configured to make it accessible. In more detail, as depicted in Figure

Routing, any communication that has to occur between a TRUSTS component and a third party resource

which resides outside of TRUSTS, or another TRUSTS resource which is hosted in another TRUSTS node,

should be realized through the Trusted Connector. To this end, for each such communication, a specific

route should be defined, according to the Apache Camel8 Consumer – Provider model followed by the IDS

Trusted Connector9. This route requires two rules to be specified, one in the node initiating the

communication (Consumer) and one in the node receiving and responding to said communication

(Provider). For these to be established, it is necessary to know the following details:

(1) The hostname of the Trusted Connector that acts as provider

(2) The port through which this Trusted Connector is accessible from the internet

(3) The name inside the Provider node by which the resource is accessible

(4) The name by which the resource is known to the rest of the TRUSTS platform.

(5) The port that the resource exposes to the Trusted Connector in its node (the provider node)

(6) The REST API endpoint (route) that the consumer might want to access in the resource.

Additionally, components in the consumer’s organization consuming the resource (e.g., an application

running in a browser, or an existing component acting as an HTTP client) must have access to (7) the

consumer node’s Trusted Connector name in the organization’s network, and (8) the port number for

receiving local requests.

With this in hand, the consuming component will make a request to the local Trusted Connector, which

forwards it to the provider’s Trusted Connector which, in turn, will forward it to the resource. This is

depicted in more detail in Figure Routing, where the origin of each of the 8 metadata mentioned above is

also specified. Since these metadata are to be used by both provider and receiver nodes, and by several

components within each, they must be accessible through the TRUSTS KG. Some of these metadata can

8 https://camel.apache.org/
9 https://github.com/International-Data-Spaces-Association/DataspaceConnector/wiki/Using-Camel

D3.7 Data Governance, TRUSTS Knowledge Graph I

© TRUSTS, 2021 Page | 21

be used to configure the routes as soon as the providing component is installed, while others are to be

queried dynamically when the request is about to take place. In particular:

1. When a new resource is deployed in the provider node, it needs to be available to other nodes. Its

internal hostname and port must be available to the node’s Trusted Connector. This Trusted

Connector will then create a rule that guarantees that any requests it receives are forwarded to

this specific component.

2. When access to a resource is purchased by the consumer. The consumer’s Trusted Connector must

create a rule that forwards all requests it receives in its local access port to the remote node

serving the resource.

The origin of this metadata can be varied. Some can be input directly by the provider when onboarding a

Service or Application, and some can be extracted automatically from the programmatic descriptions of

said assets, respectively a docker-compose10 file, or an OpenAPI3.011 specification, as detailed below.

·

Figure 1: Routing

Sending messages between Trusted Connectors requires configuration in both the receiving and emitting
end. This configuration comes in the form of Apache Camel routes, and the creation of these rules
necessitates access to metadata. Pictured are the different metadata properties used for configuration.
Boxes with green borders represent properties not currently part of IDS-IM. Circled numbers correspond
to the metadata description in the text.

10 https://docs.docker.com/compose/compose-file/, last accessed June 25, 2021
11 https://swagger.io/specification/, last accessed June 25, 2021

https://docs.docker.com/compose/compose-file/
https://swagger.io/specification/

D3.7 Data Governance, TRUSTS Knowledge Graph I

© TRUSTS, 2021 Page | 22

3.4 Installation of applications

One of the type of assets available for purchase through the TRUSTS platform are applications: software
artefacts that are transferred to and executed in the computing infrastructure of the consumer.
Installation of applications means downloading a container image by the consumer and setting up the
corresponding routing and configuration parameters. After installation, the application can be accessed
from within the consumer’s internal network, and every access to the application is done through the
Trusted Connector, allowing for detailed metering of access and enforcing of contract provisions.

When a participant (either a corporate entity or a user) wants to work with a bought application or service
(i.e., App) the necessary execution environment has to be setup up by a system administrator (SA) so that
the App can be installed and run. Therefore, the system administrator needs to provide either a physical
or virtual machine with an IP address assigned and accessible from the Trusted Connector of the
organization’s TRUSTS node. They have to configure the Trusted Connector outbound ports so that the
App will be accessible by end-users through the combination of IP address and outbound port (or a given
domain and path). These ports and ip addresses are to be available to the application users.

As the App will be hidden from outside with the help of the Trusted Connector, the routing mechanism
described above has to configure an outbound port in the Trusted Connector for the App to be installed.
Thus, the metadata necessary for app installation is a superset of that required for the automatic creation
of routes.

When the TRUSTS environment is set up, the App can be installed by downloading it from the TRUSTS
Docker Registry. This implies that the consumer’s node must have access to docker registry, and thus its
metadata must be included in the TRUSTS KG. Subsequently, the docker container holding the actual
instance of the App can either be instantiated directly with Docker or wrapped (and configured more
easily) from within in a docker-compose V312 environment after the default configuration for the App is
pulled from the TRUSTS KG and provisioned at App startup. This configuration can be extracted
automatically from the docker-compose file at app on-boarding times, and includes volume names, port
numbers and network names.

After being configured correctly, requests to the App get routed from the outbound port of the underlying
machine via the Trusted Connector’s outbound port to the App’s outbound port. If the App itself needs
any other Service/App (i.e., Component) to execute its tasks, respective Routes have to be configured so
that the App is able to access other Components either behind the same or remote Trusted Connectors.
Additionally, if the App has certain requirements regarding certain protocols or headers to be sent along
requests, Routes have to take this information into account as well, and thus it has to be available in the
TRUSTS KG.

Importantly, when an app is downloaded, the Usage Control mechanism in the consumer’s node must also
be ready to process access requests to it from within the consumer’s network. Thus, metadata regarding
contracting must be made available during installation. This will enable the Usage Control component to
react to an access request to the application by sending a query to the node’s Smart Contract Execution

12 https://docs.docker.com/compose/compose-file/compose-file-v3/, accessed June 2021

D3.7 Data Governance, TRUSTS Knowledge Graph I

© TRUSTS, 2021 Page | 23

with the ID of the requesting user, and the ID of the contract with which this app was installed and receive
authorization information.

Other configurations might be necessary inside the consumer’s node, but even if automatable, have no
effect on, or require information from, other TRUSTS nodes. Namely, as the Trusted Connector will wrap
Apps and other Components potentially sharing same names, it is necessary to distinguish Components
by assigning them to separate (Docker-) networks and update the Routes, respectively. Likewise, if the
App itself needs file system access via so called Docker volumes, the system administrator needs to take
care of implied access restrictions or to make sure that equivalent docker options/configurations are used
(e.g., Docker Named Volumes instead of Bind Volumes).

3.5 Consuming of services

Services are defined in the TRUSTS platform as software artefacts which are executed on the provider’s
computing infrastructure, but which are accessed by the consumer. In order to make a service available
it is necessary to configure routes for this in the provider’s Node, as specified in the sections above.
Additionally, since services are to be subjected to contractual agreements and usage control, the consumer
must also access them through their respective Trusted Connector13, and thus routing must also be set up
in their connector. This is described in detail in the section “Automatic creation of routing rules” above.

In order for services to be usable to consumers, an adequate description of their interfaces must be

provided. For this, the TRUSTS KG must contain provisions for a full OpenAPI3.014 description to be made

of every service. From said descriptions, configuration for routing can be generated, and also further

catalographic metadata to aid in the discovery of the service. For example, by providing a properly

annotated OpenAPI 3.0 description, a potential customer can quickly realize if a service consumes the

type of data they have at hand. Finally, by providing such a description, customers can auto-generate

clients for services for integrations into their applications.

3.6 Contracting

One of the key features envisioned in the TRUSTS platform is the possibility to offer assets in accordance

with pre-specified contracts, and to have the compliance with them automatically and reliably verified.

For this purpose, a series of contracting mechanisms will be deployed as part of the TRUSTS platform. In

order to support contracting, and contract compliance verification, it is necessary to establish a common

vocabulary between said mechanisms, the assets catalogue and the usage control mechanisms. In brief,

the entities (assets, participants, etc) that are referred to in contracts, and the relationships between

them, must be the same as in the catalogue and elsewhere in the platform. Thus, the design of the

metadata schema must take into account the specific requirements of the contracting mechanisms.

13The provider can opt-out of this provision desired, for example, casual users that don’t have a fully configured TRUSTS node at
their disposal, to access their service.
14 https://swagger.io/specification/#version-3.0.3

D3.7 Data Governance, TRUSTS Knowledge Graph I

© TRUSTS, 2021 Page | 24

There are several ways to see assets in TRUSTS: e.g., a digital asset which interacts with other digital

artifacts (e.g., a file to be loaded by a piece of software, or an endpoint to be accessed by a client), a

catalographic entity (that is to be findable using search and recommendation), or a subject of a contract.

It is the latter which occupies us in this section.

A contract is a series of statements involving an asset (or a set thereof) and two or more parties, in which

a series of conditions (monetary or not) are stipulated. Importantly, these statements are to be used by a

variety of actors for different tasks, which are detailed below.

We decide to encode these statements as part of the metadata, and thus include its specification in the

information model, because i) many of these are about entities which are already contained in the

metadata, and ii) these statements must be interpreted by different components in a consistent manner.

For example, the Asset which is subject of a contract must be equated with an Asset to which access

restrictions apply, or to an Asset which must be findable on the Catalog. One effective way to equate these

is to use a single identifier for all of them. The same is true of the different predicates involved, for

example, a purchase model as stipulated in a contract must be accompanied by corresponding behaviour

in the usage control system. Since the purpose of metadata, as stated above, is for harmonized and

semantically web-defined description of entities that enables consistent and reliable actions, we make the

metadata as the source of truth regarding contracting purposes within the TRUSTS platform.

In the following, we describe the different uses of metadata for contracting, and its relation to other

components. We incorporate a subset of the concepts important in contracting as detailed in deliverable

D3.3. First, we describe the use of metadata generated for other purposes in contracts. Then we describe

the use of statements originating from contracts by other components.

Table 2: Metadata entities and Statements in the KG for use by the contracting system.

Class of Entity or
Type of Statement

Components using it Purpose in Contracting

Identifier for
Assets

Platform Interface,
Usage Control,
Recommender,
Metadata Mapper,
Notification Service

Identify the assets which are subject of the contract

Identifier for
Agents (Users,
Corporate
entities)

Platform Interface,
Usage Control,
Recommender

Identify the Providers and Consumers in the Contract

Identifiers for
Nodes

Platform Interface,
Usage Control,
Asset Consumer

Specifying the means of access to an asset that are
covered by the contract

D3.7 Data Governance, TRUSTS Knowledge Graph I

© TRUSTS, 2021 Page | 25

Type of Asset Platform Interface,
Usage Control,
Recommender,
Metadata Mapper,
Dataflow Router

Determine what different kinds of purchase models
are available

Asset is Provided
by Agent

Platform Interface,
Usage Control, Metadata
Mapper

Specify provider in the Contract

Table 3: Statements included in contracts that must be acted upon by other components

Statement in a Contract Consuming Component Purpose

An Agent is providing an Asset Usage Control The Usage Control in the
provider’s node must be
aware that requests for the
specific asset will be
incoming.

An Agent is purchasing an Asset Usage Control The Usage Control in the
provider’s node must give
access to this specific Agent
to this specific Asset

Recommendation The recommendation
system can take into account
this action to recommend
further assets to this and
other users.

A contract is valid from a given starting
date

Usage Control The Usage Control in the
provider’s node must take
this rule into account when
it receives a request for this
Asset

A contract is valid until a given starting
date

Usage Control The Usage Control in the
provider’s node must take
this rule into account when
it receives a request for this
Asset

A contract allows for a fixed number of
access operations to an Asset

Usage Control The Usage Control in the
provider’s node must take
this rule into account when
it receives a request for this

D3.7 Data Governance, TRUSTS Knowledge Graph I

© TRUSTS, 2021 Page | 26

Asset

A contract specifies that access to a
Dataset can only be done through a
specific Service

Recommendation The recommendation
system can take into account
this action to recommend
the service to other users
acquiring this Asset.

We have shown above several pieces of information that are used by both the Contracting system and

other components in the TRUSTS platform. To enable this sharing of information, and to guarantee it is

consistent and well-defined interpretation by the different components, each of this metadata must be

part of the TRUSTS Knowledge Graph.

The statements included in a contract, however, are much more convoluted than simply “Agent X has

access to Asset Y”. In general, a contract specifies a series of Duties, Permissions and Prohibitions

(collectively known as Rules), each of which acts upon an asset and a set of Parties. These Rules dictate

the behaviour of the Usage Control system, and so a common and well-defined meaning of each must

exist between the component for composing, presenting and signing contracts (the Contracting

Mechanism) and the component in charge of enforcing them (the Usage Control mechanism).

Furthermore, these rules should be represented verbatim in the human readable version of the contract,

and therefore mechanisms must exist for verbal, multilingual representations of contracts. Finally, when

auditing the execution of a contract, both for legal and business purposes (e.g., by the Business,

Administration and Monitoring tools), this meaning must be preserved. This implies that the TRUSTS

knowledge graph must include a formalized representation of the rules contained within a contract, which,

in turns, necessitates the use of an expressive Information Model. It is for this reason that ODRL is

subsumed into the TRUSTS information model and described in detail in chapter 4.

Importantly, contracts for specific transactions are generated from templates in which the different

variables are substituted for concrete asset and agent identifiers, as well as literals such as dates for validity

or integers for number of allowed accesses or currency. This templating mechanism is relevant for the

metadata management because an actual contract instance inherits the rules of the template, which in

turn imposes new restrictions on the descriptions of such templates, namely, that they must contain a

number of unbound variables which are to be evaluated upon instantiation. The facilities for template to

instance transition including this evaluation of variables is not by default supported by ODRL, so

workarounds are suggested in chapter 5 section 5 to deal with this.

D3.7 Data Governance, TRUSTS Knowledge Graph I

© TRUSTS, 2021 Page | 27

3.7 Usage Control

The purpose of the TRUSTS platform is the exchange of data assets between different parties, which must

be carried out with a certain level of reliability and trustworthiness. This necessitates, in turn, the use of

stringent Usage Control mechanisms. These will go beyond the authorization systems normally available

in computing environments, to accommodate for a variety of commercial models. For example, they will

allow for assets to be accessible only for a limited time period, or for a limited number of access operations.

Furthermore, functional requirements (e.g. IR3 in deliverable 2.2), of the TRUSTS platform include the

possibility of detailed access logs being auditable at all times, in order to provide guarantees to all parties

involved in a contract. Finally, the complexity of the routing of information within a TRUSTS node is also

relevant for usage control as, for example, several instances of the same service might be running on a

node, and a request must be forwarded to a particular one in accordance with contractual policies.

Usage control, as envisioned in the TRUSTS platform, is carried out by a separate component that resides

in every node and which must clear all access operations that the node’s connector requests. For this

clearance to be executed, information from the request must be compared with that contained in a ledger

that enjoys the trust of all parties. This ledger is the Contracting Mechanism of the TRUSTS platform. For

this comparison to be made, a consistent and well-defined model should be adapted by all involved

components, so that the meaning of Agent, Asset, Access Operation, etc. is consistently interpreted by all.

This is the purpose of the TRUSTS KG, and the information model on which it is based must, therefore, be

prepared to handle the functional requirements of usage control.

It is envisioned that the following types of entities and statements about them dictate the behavior of the

Usage Control mechanism.

Table 4: Metadata entities and Statements which are included in the Knowledge Graph for purposes other

than Usage Control, but which can be leveraged by Usage Control

Class of Entity or
Type of Statement

Components using it Purpose in Usage Control

Identifier for
Assets

Platform Interface,
Contracting,
Recommender,
Metadata Mapper,
Notification Service,
Routing

Identify the assets that are the subject of a request

Identifier for
Agents (Users,
Corporate
entities)

Platform Interface,
Contracting,
Recommender

Identify the Agents which are requesting access.

Identifier of Contracting Check with the Smart Contract Execution if the access

D3.7 Data Governance, TRUSTS Knowledge Graph I

© TRUSTS, 2021 Page | 28

Contract should be granted

Access details of
an Asset

Platform Interface,
Metadata Mapper

Determine which routes of the Connector should be
triggered

3.8 Interoperability with third party data initiatives

Interoperability with third-party data initiatives is the focus of T3.3 within TRUSTS. Third-party initiatives
include (i) existing external data markets, and (ii) the European Open Science Cloud (EOSC15). The
challenges for designing an appropriate metadata schema arise from the variations in the characteristics
of both different data markets and different EOSC initiatives. Neither data markets nor EOSC initiatives
expose a unique and homogeneous interface to be used for data exchange. Instead, they strongly differ in
both their conceptual and technological orientation. We aim to build a set of components to effectively
establish interoperation with third-party data initiatives and TRUSTS:

● a “data exchange client component”: an interface for external initiatives to align their metadata
with TRUSTS.

● a “data exchange TRUSTS components”: a component to route data from the aforementioned
client component to the data storages of TRUSTS.

● a “registry of data markets” (RoD): a catalog listing existing data initiatives and their connection
endpoints.

A potential use case is the interest of a TRUSTS customer in data assets for a given domain, where the data
assets listed in TRUSTS do not fully match the requirements. In TRUSTS corporate nodes, the Data
Exchange Client Component is connected to the recommender component of TRUSTS. The recommender
component incorporates the metadata that has been registered by an external data initiative via the Data
Exchange Client Component and makes it searchable.

In the following, we describe the metadata schemata foreseen for the establishment of these components.
This encompasses (i) the metadata schema built into the RoD, (ii) EDMI (EOSC Dataset Minimum
Information)16, and (iii) the prototypical design of the metadata schema for interoperability with external
datamarkets.

EOSC-related Metadata

The EOSC pilot study17 identified in its deliverable “D6.9: Final report on Data Interoperability”18 a common
set of minimum information for future EOSC initiatives, summarized in EDMI19. We consider the usage of
EDMI as crucial for the TRUSTS metadata schema to facilitate compliance with EOSC. EOSC has by nature
a strong focus on science and research, which is reflected in EDMI. EDMI partially overlaps with the IDS-
IM. It shares multiple properties such as “edmi:name” ↔ ”ids-im:title”, “edmi:description” ↔ “ids-

15 https://eosc-portal.eu/, last accessed June 17, 2021
16 https://eosc-edmi.github.io/, last accessed June 17, 2021
17 https://eoscpilot.eu/, last accessed June 17, 2021
18 https://www.eoscpilot.eu/content/d69-final-report-data-interoperability, last accessed June 17, 2021
19 https://eosc-edmi.github.io/, last accessed June 17, 2021

https://eosc-portal.eu/
https://eosc-edmi.github.io/
https://eoscpilot.eu/
https://www.eoscpilot.eu/content/d69-final-report-data-interoperability
https://eosc-edmi.github.io/

D3.7 Data Governance, TRUSTS Knowledge Graph I

© TRUSTS, 2021 Page | 29

im:description”, or “edmi: dateCreated“ ↔ “ids-im: date created“. However, there are multiple
properties unique to EDMI, which are required for EOSC interoperability and thus for TRUSTS. For example,
EDMI has properties strongly tied to scientific referencing such as “scientificType”, “citation”, or
“referenceCitation”, but also for documenting scientific experiments, such as “variablesMeasured” or
“measurementTechnique” (see Table 8: EDMI metadata for a full list of properties unique to EDMI).

Metadata required for interoperability with third-party datamarkets

The ecosystem of datamarkets consists of a plethora of platforms with significantly differing content,
offerings, and technical requirements. The metadata schema for datamarket interoperability aims at
identifying a set of properties shared by many or most datamarkets. The Data Exchange Client Component
developed as part of T3.3 exposes this schema both in a GUI and via an API. Datamarkets interested in
exchanging data assets with TRUSTS can adopt this schema. By adherence to the exposed schema, their
data assets will get listed within TRUSTS appropriately. At this stage, we analyzed a set of datamarkets and
selected Namara20 and Dawex21 to extract a set of properties relevant for them. The currently envisaged
schema includes properties such as “trusts:contact” (the name of data market contact),
“trusts:collectiontype” (the type of data collection, e.g. survey, questionnaire, log, etc.), or
“trusts:instrument” (the method used to collect the data).

At the current stage, the metadata schema for datamarket interoperability is still in an initial stage.
Interrogations with datamarket operators are in the planning, with the aim of getting further insights into
the technical specifications of datamarkets as well as their willingness to adopt proposed approaches.

Registry of Data Markets

Datamarkets, but also EOSC initiatives, willing to exchange data assets with TRUSTS, communicate with
the TRUSTS storages using the Data Exchange Client Component. They register the metadata of their data
assets in this component. Further on, the Data Exchange TRUSTS Component harvests the so registered
data in pre-defined time intervals. An additional component, the RoD (Registry of Datamarkets), serves as
an address book for the Data Exchange TRUSTS Component to locate the datamarket interfaces online. It
functions as an address book routing the communication between the Data Exchange TRUSTS Component
and the Data Exchange Client. Furthermore, the RoD works as a central point for information related to
Datamarkets and is planned to exist beyond project lifetime. It features a search engine to find
datamarkets based on their attributes. The attributes represent characteristics of the respective
datamarkets and are based on the taxonomy of datamarkets based on their business models compiled in
the work by van de Ven22. This taxonomy segregates datamarkets along four domains (service, technology,
organization, finance), which are further split into dimensions, e.g., “revenue model” and “pricing model”
for the finance domain. Each dimension has its own set of characteristics, e.g., “freemium”, “pay-per-use”,
“flat fee tariff”, … for the dimension “pricing model” in the domain “finance”. The RoD allows faceted

20 https://marketplace.namara.io/, last accessed June 17, 2021
21 https://www.dawex.com/en/, last accessed June 17, 2021
22 van de Ven, M.R. (2020). Creating a Taxonomy of Business Models for Data Marketplaces. Master
Thesis, TU Delft Technology, Policy and Management.

https://marketplace.namara.io/
https://www.dawex.com/en/

D3.7 Data Governance, TRUSTS Knowledge Graph I

© TRUSTS, 2021 Page | 30

search along those domains, dimensions, and characteristics. For each datamarket, it shows which
characteristics are fulfilled (see Figure 2: Taxonomy_of_datamarkets).

The TRUSTS metadata schema needs to reflect the requirements of the RoD. Therefore, we envision the
properties listed in Table 8: RoD properties for inclusion of the TRUSTS metadata schema. It mirrors the
attributes of the taxonomy of datamarkets.

Figure 2: Taxonomy of datamarkets

The taxonomy of datamarkets based on their business models characterizes datamarkets along a set of
domains, dimensions, and characteristics.

4 The IDS Information Model

The IDS Information Model23 (IDS-IM) is the result of extensive work in the IDSA towards a unified ontology

for representing exchange of digital content [2]. It is a formalization of the domain of digital content

exchange that aims to have clear and unambiguous semantics, so that it can be used by a variety of

23 https://w3id.org/idsa/core, accessed June 2021

D3.7 Data Governance, TRUSTS Knowledge Graph I

© TRUSTS, 2021 Page | 31

software components developed by different organizations and distributed across several computing

infrastructures. It deals mainly with data assets and data processing software, as well as associated entities

of the Industrial Data Spaces (IDS) such as participants, infrastructure, components and processes. The

IDS-IM details out and formally defines said entities in order to enable components to share, search for,

and reason upon their structured meta-data descriptions

This formalization is represented in three separate but interrelated ways (See Figure IDS1). The first, called

Conceptual Representations is aimed at human consumers and provides a detailed explanation of the

formalization, an analysis of its origins and examples of its uses. The second, called Declarative

Representation is a large set of RDF statements in OWL that constitute the authoritative formalization of

the domain. It is accompanied by further RDF statements that comply with the SHACL and SKOS ontologies

(among others) which enables its consumptions by both humans and machines for a variety of tasks.

Finally, the Programmatic Representation is a translation of the classes, as defined in OWL, into classes, as

defined in an object-oriented programming language. In particular, a Java implementation24 exists that is

automatically updated whenever the RDF statements are amended. The Declarative Representation is

considered authoritative because of its clear semantics and its adherence to standards which, together,

allow for the IDS-IM to be linked and combined with other ontologies. Since the TRUSTS-IM described in

this document is, in effect, an extension of the IDS-IM, we consider only this Declarative Representation

and refer to it simply as IDS-IM.

Figure 3: IDS1, the three representations of the IDS-IM. Retrieved from https://international-data-spaces-

association.github.io/InformationModel/docs/index.html on 2021.06.14

The ontology which constitutes the core of the IDS-IM consists of 220 OWL classes, 84 data properties and

199 object properties. These are defined and maintained directly by the Information Model sub-group

(SWG4) of the IDSA. However, the versatility and expressiveness of the IDS-IM lies in the fact that it is

24 https://github.com/International-Data-Spaces-Association/InformationModel

https://international-data-spaces-association.github.io/InformationModel/docs/index.html
https://international-data-spaces-association.github.io/InformationModel/docs/index.html

D3.7 Data Governance, TRUSTS Knowledge Graph I

© TRUSTS, 2021 Page | 32

linked with several other ontologies. These are listed in Table 5: Ontos, and the most important ones are

described in detail in the sections below. Additionally, a series of well-known controlled vocabularies is

also part of the IDS-IM, specifically for the specification of data properties (in the RDF sense) of the

different entities described.

Table 5: Ontos: Other ontologies are linked to the IDS-IM

Ontology Number of Linked Classes

DCAT 11

ODRL 26

Data Cube 15

ProvO 31

vcard 63

OWL-Time 20

Organization Ontology 10

Foaf 13

The different classes of the IDS-IM and linked ontologies are divided into 7 facets, which are rough groups

of classes that deal with related types of entities: Resources (subsuming Data and Applications),

Infrastructure, Participants, Regulations, Interactions and Maintenance. Among these, the Resource facet

is central to the IDS-IM, as it is used to describe the different assets that are to be exchanged. Each

resource is described according to three different views: Commoditization (relating to its quality of being

tradable), Communication (relating to its quality of being transmissible) and Content (relating to its quality

of being catalogued, discovered and consumed).

It is important to note that the IDS is not intended to be a data market. It is therefore of no surprise that
the IDS-IM is not completely suitable for the datamarket case. However, it does accommodate for
expressing information required for cataloguing assets, as well as access policies to them. These
functionalities of the IDS-IM come from the inclusion of the DCAT and ODRL ontologies respectively.
Likewise, there are a series or classes and properties which are meant for the operation of Data Spaces,
namely those which refer to Components, Connectors etc. which are also leveraged by TRUSTS.

One outstanding feature of the IDS-IM is the notion of messages among connectors, which defines a data

format by which changes to the metadata can be transmitted from one node to another. For example,

when new assets become available in one node, it can send a message notifying this fact to a centralized

D3.7 Data Governance, TRUSTS Knowledge Graph I

© TRUSTS, 2021 Page | 33

metadata store. Likewise, when a node becomes unavailable for some reason, this change of state can be

notified to other nodes via a standardized messaging format. This messaging format, combined with the

explicit semantics of the IDS-IM ontology definition, allows for consistent communication between

different components. In TRUSTS, this messaging format will be exploited, and components adapted to

send and receive such messages when suitable (e.g. catalog interfaces), which will allow for seamless

interoperation with other IDS deployments.

4.1 DCAT

Data Catalogue Vocabulary (DCAT) is a specification25 developed by W3C, in the context of government
data catalogs such as data.gov and data.gov.uk but is also applicable and has been used in other contexts.
It provides an RDF vocabulary to facilitate interoperability between data catalogs published on the Web.
It enables a publisher to describe datasets and data services in a catalog, using a standardized model and
vocabulary that facilitates the consumption and aggregation of metadata from multiple catalogs. Thus,
discoverability of datasets and data services can be increased. Additionally, it allows a decentralized
approach to publishing data catalogs. Federated search for datasets across catalogs in multiple sites is also
possible using the same query mechanism and structure. Aggregated DCAT metadata can serve as a
manifest file as part of the digital preservation process.

Complementary vocabularies can be used together with DCAT to provide more detailed format-specific
information, for instance properties from the VOID vocabulary can be used within DCAT to express various
statistics about a dataset if that dataset is in RDF format.

A data catalog conforms to DCAT if:

● Access to data is organized into datasets, distributions and data-services.
● An RDF description of the catalog itself, the corresponding catalogued resources and distributions

is available
● The contents of all metadata fields that are held in the catalog and that contain data about the

catalog itself, the corresponding catalogued resources and distributions are included in this RDF
description and are expressed using the appropriate classes and properties from DCAT, except
where nos such class or property exists

● All classes and properties defined in DCAT are used in a way consistent with the semantics declared
on the DCAT specification.

A DCAT profile is a specification for a data catalog that adds additional constraints to DCAT. A data catalog
that conforms to the profile also conforms to DCAT. Additional constraints in a profile may include

● Cardinality constraints
● Sub-classes and sub-properties of the standard DCAT classes and properties
● Classes and properties for additional metadata fields not covered in DCAT vocabulary specification
● Controlled vocabularies or URI sets as acceptable values for properties
● Requirements for specific access mechanisms (RDF syntaxes, protocols) to the catalog’s RDF

description

25 https://www.w3.org/TR/vocab-dcat/, accessed June 2021

D3.7 Data Governance, TRUSTS Knowledge Graph I

© TRUSTS, 2021 Page | 34

Some of the DCAT profiles are:

● DCAT-AP26: The DCAT application profile for data portals in Europe. There exist also a number of
regional specialized profiles like:

○ DCAT-AP_IT27 (Italian)
○ DCAT-AP.de28 (German)
○ DCAT-AP-SE29 (Swedish)

● GeoDCAT-AP30: Geospatial profile
● StatDCAT-AP31: Statistical profile

26 https://joinup.ec.europa.eu/solution/dcat-application-profile-data-portals-europe, accessed June 2021
27 https://docs.italia.it/italia/daf/linee-guida-cataloghi-dati-dcat-ap-it/it/stabile/dcat-ap_it.html, accessed June 2021
28 https://dcat-ap.de/def/, accessed June 2021
29 https://lankadedata.se/spec/DCAT-AP-SE, accessed June 2021
30 https://joinup.ec.europa.eu/solution/geodcat-application-profile-data-portals-europe, accessed June 2021
31 https://joinup.ec.europa.eu/solution/statdcat-application-profile-data-portals-europe, accessed June 2021

https://joinup.ec.europa.eu/solution/dcat-application-profile-data-portals-europe
https://docs.italia.it/italia/daf/linee-guida-cataloghi-dati-dcat-ap-it/it/stabile/dcat-ap_it.html
https://dcat-ap.de/def/
https://lankadedata.se/spec/DCAT-AP-SE
https://joinup.ec.europa.eu/solution/geodcat-application-profile-data-portals-europe
https://joinup.ec.europa.eu/solution/statdcat-application-profile-data-portals-europe

D3.7 Data Governance, TRUSTS Knowledge Graph I

© TRUSTS, 2021 Page | 35

Figure 4: DCAT. An overview of the DCAT model, showing the classes of resources that can be members
of a catalog, and the relationships between them. Image from https://www.w3.org/TR/vocab-dcat-2/
accessed on 2021-06-20

D3.7 Data Governance, TRUSTS Knowledge Graph I

© TRUSTS, 2021 Page | 36

4.2 ODRL

The Open Digital Rights Language (ODRL32) is a policy express language that provides a flexible and
interoperable information model, vocabulary and encoding mechanisms for representing statements
about the usage of content and services. The ODRL Information Model describes the underlying concepts,
entities and relationships that form the foundational basis for the semantics of the ODRL policies.

Policies are used to represent permitted and prohibited actions over a certain asset, as well as the
obligations required to be met by stakeholders. In addition, policies may be limited by constraints (e.g.
temporal or spatial) and duties (e.g. payments) may be imposed on permissions.

The ODRL Information Model represents Policies that express Permissions, Prohibitions and Duties related
to the usage of Asset resources. The Information Model explicitly expresses what is allowed and what is
not allowed by the Policy, as well as other terms, requirements, and parties involved. The aim of the ODRL
Information Model is to enable flexible Policy expressions by allowing the policy author to include as much,
or as little, detail in the Policies.

Figure 5: ODRL. The ODRL Information Model. Figure from https://www.w3.org/TR/odrl-model/
accessed on 2021-06-20

32 https://www.w3.org/TR/odrl-model/, accessed June 2021

https://www.w3.org/TR/odrl-model/
https://www.w3.org/TR/odrl-model/

D3.7 Data Governance, TRUSTS Knowledge Graph I

© TRUSTS, 2021 Page | 37

ODRL can plug into existing DRM architectures, or into open frameworks, for instance peer-to-peer (P2P)
DRM services. It is considered as a way to express DRM policies striving to be compatible with other
languages in the DRM community.

4.3 DCMI

DCMI (Dublin Core Metadata Initiative) or Dublin Core as it is commonly known is an initiative to create a
digital library card catalog for the Web. Dublin Core is composed of 15 metadata elements that offer
expanded cataloguing information and improved document indexing for search engines. Two forms of
Dublin Core exist: Simple Dublin Core and Qualified Dublin Core. Simple Dublin Core expresses elements
as attribute-value pairs using solely the 15 metadata elements from the Dublin Core Meta Element Set.
Qualified Dublin Core increases the specificity of metadata by adding information about encoding
schemes, enumerated lists of values, or other processing clues. Qualifiers are more complex and can pose
challenges to interoperability. Dublin Core position is that resource discovery should be independent from
the medium of the resource. While Dublin Core targets electronic resources, it aims to be flexible enough
to help in searches for more traditional formats of data as well.

Figure 6: DCMI. The DCMI Element Set. Image from [9]

Each term is identified with a Uniform Resource Identifier (URI), a global identifier usable in Linked Data.

Term URIs resolve to the “DCMI Metadata Terms” document when selected in a browser or, when

referenced programmatically by RDF applications, to one of four RDF schemata. The scope of each RDF

schema corresponds to a "DCMI namespace” or set of DCMI metadata terms that are identified using a

common base URI, as enumerated in the DCMI Namespace Policy. In Linked Data, the URIs for DCMI

D3.7 Data Governance, TRUSTS Knowledge Graph I

© TRUSTS, 2021 Page | 38

namespaces are often declared as prefixes in order to make data, queries, and schemata more concise

and readable.

The four DCMI namespaces are:

● http://purl.org/dc/elements/1.1/ The /elements/1.1/ namespace was created in 2000 for the

RDF representation of the fifteen-element Dublin Core and has been widely used in data for

more than twenty years. This namespace corresponds to the original scope of ISO 15836, which

was published first in 2003 and last revised in 2017 as ISO 15836-1:2017 [ISO 15836-1:2017.

● http://purl.org/dc/terms/ The /terms/ namespace was originally created in 2001 for identifying

new terms coined outside of the original fifteen-element Dublin Core. In 2008, in the context of

defining formal semantic constraints for DCMI metadata terms in support of RDF applications,

the original fifteen elements themselves were mirrored in the /terms/ namespace. As a result,

there exists both a dc:date (http://purl.org/dc/elements/1.1/date) with no formal range and a

corresponding dcterms:date (http://purl.org/dc/terms/date) with a formal range of "literal".

While these distinctions are significant for creators of RDF applications, most users can safely

treat the fifteen parallel properties as equivalent. The most useful properties and classes of

DCMI Metadata Terms have now been published as ISO 15836-2:2019 [ISO 15836-2:2019]. While

the /elements/1.1/ namespace will be supported indefinitely, DCMI gently encourages use of the

/terms/ namespace.

● http://purl.org/dc/dcmitype/ The /dcmitype/ namespace was created in 2001 for the DCMI

Type Vocabulary, which defines classes for basic types of entities that can be described using

DCMI metadata terms.

● http://purl.org/dc/dcam/ The /dcam/ namespace was created in 2008 for terms used in the

description of DCMI metadata terms.

D3.7 Data Governance, TRUSTS Knowledge Graph I

© TRUSTS, 2021 Page | 39

Figure 7: Dublin Core (DC). The relationships between the classes defined by Dublin Core. Image from

https://www.dublincore.org/specifications/dublin-core/domain-range/2007-07-02/, accessed on 2021-

06-29

5 The TRUSTS Information Model

The TRUSTS Information Model (TRUSTS-IM) specifies what classes of entities are described in metadata,
what properties describe each of them, and what relations can exist between entities of different classes.
It is, therefore, the schema of the TRUSTS KG. In the following, we describe the TRUSTS-IM in a textual and
tabular manner, mostly aimed to be a reference for humans implementing components that deal with
metadata. However, and following the different description levels of the IDS-IM, the authoritative version
of the TRUSTS-IM will be described in RDF using OWL. The description provided here is provisional and will
be revised as the next deployment stages of the TRUSTS platform progress.

For brevity of descriptions, we make use of the following namespaces in what follows:

Table 23: Use of namespaces

Prefix Namespace

ids: https://w3id.org/idsa/core/

trusts: https://www.trusts-data.eu/ontologies/IM/

https://www.dublincore.org/specifications/dublin-core/domain-range/2007-07-02/

D3.7 Data Governance, TRUSTS Knowledge Graph I

© TRUSTS, 2021 Page | 40

tdm: https://www.trusts-data.eu/ontologies/TDM/

dcat: http://www.w3.org/ns/dcat#

dct: http://purl.org/dc/terms/

edmi: None known to date

A high-level overview of the TRUSTS-IM can be seen in figure Schema, where the broad classes of entities
that are present in the TRUSTS KG are depicted. Central to it is the notion of Asset with its different levels
of concreteness, as defined in the IDS-IM. In brief, assets can be either served by a member organization
or harvested from an external source (e.g., a datamarket or EOSC initiative). Accompanying is a set of
configuration parameters which have effect on both the provider and consumer connectors, each of which
in turn resides in a node. In turn, assets are subjects of contracts. All of these relations, and the
corresponding metadata have effects on various components and processes in the TRUSTS platform, as
depicted in the figure Schema.

Figure 8: Schema: A high level overview of the TRUSTS-IM. Shown are the broad classes of entities that
make up the TRUSTS-KG, and the components of the TRUSTS platform which they affect.

The detailed description of these broad classes and their relation to the IDS-IM is provided below. The ⌙
symbol denotes the subclass relation, and green colored elements are those which are not currently part
of the IDS-IM

D3.7 Data Governance, TRUSTS Knowledge Graph I

© TRUSTS, 2021 Page | 41

5.1 Asset

Classes of entities

Table 6: Asset, Classes of entities

Class Name Description URI

Catalog A collection of resources. ids:ResourceCatalog

Digital Content An asset that will appear in the catalogue. ids:DigitalContent

 ⌙Service A software artifact which is executed on the
provider’s premises and the access to which
can be traded in the TRUSTS platform.

dcat:DataService

 ⌙Application A software artifact which is executed on the
consumer’s premises and whose executable
image can be traded in the TRUSTS platform.

ids:AppResource

 ⌙Dataset A file, or collection thereof, that can be
traded in the TRUSTS platform, in which case
a copy of which is transmitted from provider
to consumer.

ids:DataResource

Representation A specific representation of a Digital Content,
with a particular access method and
associated configuration.

ids:Representation

 ⌙Application Representation Representation of an Application, to which
configuration can be ascribed

ids:AppRepresentation

 ⌙Data Representation Representation of a Dataset, for example a
particular format or language in which the
dataset can be distributed.

ids:DataRepresentation

⌙ Service Representation Representation of a service, for example a
deployment of a service with particular
performance

trusts:ServiceRepresentation

Artifact A particular instance of representation, which
can be transferred to, or accessed by, the
consumer. For example, an actual copy of a
file, or a running server providing a service, or
a container image for an app.

ids:Artifact

⌙Application Artifact A specific instance of an application which is
subject to contract and usage control

trusts:AppArtifact

D3.7 Data Governance, TRUSTS Knowledge Graph I

© TRUSTS, 2021 Page | 42

⌙Service Artifact A specific instance of a service trusts:ServiceArtifact

⌙Dataset Artifact A specific instance of a dataset, with a
specific location, filesize, and file hash.

trusts:DatasetArtifact

Relationships between these entities

Table 7: Asset, Relationship between entities

Domain Range Relation URI

ids:ResourceCatalog ids:DigitalContent offers resource ids:offeredResource

ids:DigitalContent ids:Representation has representation ids:representation

ids:DigitalContent ids:Representation has default representation ids:defaultRepresentation

ids:Representation ids:Artifact has instance ids:instance

dcat:DataService ids:DataResource serves dataset dcat:servesDataset

ids:DigitalContent ids:AppResource requires application to be
accessed

trusts:requiresApplication

Properties of entities

Since ids:Catalog is a subclass of dcat:Catalog, all the properties of the latter are also applicable to the
former. Likewise, the properties of dcat:Distribution are applicable to entities whose class is either
ids:Representation or any of its subclasses, and the properties of dcat:Dataset are applicable to entities
whose class is either ids:DigitalContent or any of its subclasses. Finally, EDMI-specific metadata was added
to datasets.

Table 8: Asset, Properties of entities

Classes Property Description in TRUSTS URI

Catalog,
Digital Content,
Representation,
inc. Dataset, Services
& Applications

title A human readable title dct:title

publisher The organization making
this asset available in
TRUSTS

dct:publisher

creator The original producer of an
asset

dct:creator

D3.7 Data Governance, TRUSTS Knowledge Graph I

© TRUSTS, 2021 Page | 43

contact point Information on how to
contact the publisher

dcat:contactPoint

description Human readable
description of an asset.

dct:description

keyword Human readable, free text
keywords for identifying
an asset.

dcat:keyword

theme A main category of the
resource, coming from a
controlled vocabulary

dcat:theme

Catalog homepage The URL of the node
publishing the catalog.

dcat:homepage

Digital Content

metric

Metric to provide some
quantitative or qualitative
information about the
dataset

edmi:metric

sample A sample of the resource
idsa:sample

citation

A citation or reference to
another work that describes
the dataset

edmi:citation

referenceCitation
A citation or reference that
describes the dataset

edmi:referencecitation

authorisation

Type of authorisation
required to access the
dataset

edmi:authorisation

Time frame Time frame of dataset
delivery (e.g. (Near) real
time, Multiple)

rod:Timeframe

Data access Types of data access (e.g.
API, Download)

rod:Dataaccess

Dataset

measurementTechnique

A technique or technology
used in a dataset
corresponding to the
method used for measuring
the corresponding variables

edmi:measurementtechnique

D3.7 Data Governance, TRUSTS Knowledge Graph I

© TRUSTS, 2021 Page | 44

variablesMeasured
The variables that are
measured in the dataset

edmi:variablesmeasured

scientificType

Scientific domain or type of
the information provided in
the dataset

edmi:Scientifictype

creation date Date of creation of the
dataset

trusts:creationdate

data collection type Type of data collection (eg.
survey, questionnaire, log)

trusts:collectiontype

instrument Instrument with which the
data were collected

trusts:instrument

publication Type of publication trusts:publication

Representation licence A URL of a human-redable
copy of the contract
template

dct:license

contract template One or more contract
templates from where
contract instances for the
asset can be created

odrl:hasPolicy

access URL The URL that can be used
to access the resource
within the TRUSTS
platform

dcat:accessURL

Data Representation

byte size Number of bytes of a
dataset

dcat:byteSize

compression format Compression format, if any dcat:compressFormat

format Format in which the
dataset is presented. From
a controlled vocabulary.

dct:format

identifier The identifier property
represents any kind of
identifier for any kind of
dataset (eg. ARK
identifiers, ISBN)

edmi:identifier

D3.7 Data Governance, TRUSTS Knowledge Graph I

© TRUSTS, 2021 Page | 45

accessInterface The type of interface to
present the dataset

edmi:accessInterface

structure The description of the
structure of the dataset
(eg XML, database schema,
codebook)

edmi:structure

content Type

Type of content provided in
the dataset based on its
origin and type of processes
(eg. raw, processed,
summarised)

edmi:contentType

ids:Artifact

has contract

A contract that is attached
to a specific instance of a
resource

ids:contract

5.2 Configuration

Classes of entities

Table 9: Configuration: Classes of entities

Class Name Description URI

Resource Configuration Configuration for apps and services trusts:ResourceConfiguration

⌙App Configuration App-specific configuration ids:DataApp

⌙Service Configuration Service-specific configuration trusts:ServiceConfiguration

Endpoint Service or Application Endpoint ids:Endpoint

⌙App Endpoint Application specific Endpoint ids:DataAppEndpoint

⌙Service Endpoint Service specific Endpoint trusts:ServiceEndpoint

Parameter33 A possible entry in a key value structure
transmitted as part of a request

trusts:Parameter

33 This notion is mentioned in the IDS-IM extensively, but no class is provided for it in the Ontology

D3.7 Data Governance, TRUSTS Knowledge Graph I

© TRUSTS, 2021 Page | 46

Relationships between these entities

Table 10: Configuration: Relationships between of entities

Domain Range Relation URI

ids:Artifact trusts:ResourceConfiguratio
n

has configuration trusts:hasConfiguration

trusts:ResourceConfiguration ids:Endpoint hasEndpoint ids:appEndpoint

ids:Endpoint trusts:Parameter required headers trusts:requiredHeaders

ids:Endpoint trusts:Parameter optional headers trusts:optionalHeaders

ids:Endpoint trusts:Parameter query parameters trusts:queryParameters

Properties of entities

Table 11: Configuration: Properties of entities

Classes Property Description URI

Resource
Configuration

protocol TCP-based protocol used to
communicate with the application.
From a controlled vocabulary.

trusts:protocol

OpenAPI 3.0
Specification

OpenAPI 3.0 Specification of the
applications endpoints

ids:endpointDocumentation

deployment
name

Name, within the execution file, that
the application’s endpoints belong to

trusts:hasDeployName

start of validity starting time of configuration validity trusts:configValidityStart

end of validity end time of configuration validity trusts:configValidityEnd

Application
Configuration

execution file Content of the docker-compose file
that determines how this application
can be executed

trusts:executionFile

Service
Configuration

authentication
standard

The authentication standard that
must be used to access this service.
From a controlled vocabulary.

ids:authStandard

Endpoint endpoint path The HTTP route, relative to the
resource’s accessURL

ids:path

D3.7 Data Governance, TRUSTS Knowledge Graph I

© TRUSTS, 2021 Page | 47

endpoint
description

Human readable information and
description of the endpoint

ids:endpointInformation

MIME type the type of media returned by the
endpoint. From a controlled
vocabulary.

ids:mediaType

5.3 Connector

The notion of connector in TRUSTS is similar to the notion of connector in IDS. We refer the reader to the
original IDS specification of connector34 and its related classes and properties. We list here only those
relevant to the discussions presented in this document

Classes of entities

Table 12: Connector: Classes of entities

Class Name Description URI

Connector Represents the Trusted Connector in a TRUSTS node ids:Connector

Connector
Endpoint

One of several endpoints the endpoints to of a Trusted
Connector

ids:ConnectorEndpoint

Relationships between these entities

Table 13: Connector: Relationship between entities

Domain Range Relation URI

ids:Connector ids:ConnectorEndpoint The endpoint with which one
Trusted Connector is available
to other Trusted Connectors
over IDSCPv2

ids:hasDefaultEndpoint

ids:Connector ids:ConnectorEndpoint The endpoint by which other
components in the same
TRUSTS node can reach this
Trusted Connector

trusts:hasInternalEndpoint

34 https://international-data-spaces-association.github.io/InformationModel/docs/index.html#Connector, accessed June 2021

D3.7 Data Governance, TRUSTS Knowledge Graph I

© TRUSTS, 2021 Page | 48

Properties of entities

Table 14: Connector: Properties of entities

Classes Property Description URI

Connector
Endpoint

has port the port that defines this connector
endpoint

trusts:connectorPort

Connector
Endpoint

has url the URL where the connector can be
reached

ids:accessURL

5.4 Node

In TRUSTS, a node is a computing infrastructure (e.g., virtual machine) that is operated by a given
organization and that is only accessible within that organization’s internal network and, through a Trusted
Connector installed in it, from other nodes of the TRUSTS platform. A detailed description of this
architecture, and the network setup that it implies, can be found in D2.6. The IDS-IM does not provide any
functionality for the notion of node.

Classes of entities

Table 15: Node: Classes of entities

Class Name Description URI

Node A computing infrastructure in which TRUSTS
components are deployed.

trusts:Node

Organization A person or organization who takes part in the TRUSTS
platform.

ids:Participant

Component A component of the TRUSTS platform ids:InfrastructureComponent

⌙Connector Represents the Trusted Connector in a TRUSTS node ids:Connector

Relationships between these entities

Table 16: Node: Relationship between entities

Domain Range Relation URI

trusts:Node ids:Site The node is deployed in
this site

trusts:deploymentSite

D3.7 Data Governance, TRUSTS Knowledge Graph I

© TRUSTS, 2021 Page | 49

trusts:Node ids:Participant The node is operated by
this participant

trusts:operatedBy

ids:InfrastructureComponent trusts:Node The component is
deployed in a node

trusts:deployedInNode

5.5 Contracts

Contracts are represented in TRUSTS as instances of the ODRL:Policy class. Both instance and template
contracts are policies, the difference being that the template has a series of placeholders that are to be
replaced by actual rdf resources or literals when the contract is instantiated. Thus, the act of instantiating
a contract is, from the TRUSTS KG perspective, equivalent to making a copy of a Contract Template and
replacing the placeholders with the correct values. The Contract Instance itself (its identifiers and the
data/object properties mentioned below) are to be entered in the KG in order to enable usage control.
However, the details of the policy may not necessarily be copied into the KG as nodes surrounding the
Contract Instance. Rather, they can be written directly into the Smart Contract Executor, after a proper
translation from ODRL into the smart contract scripting language. This translation is, as of writing, pending.
An alternative would be to prepare in parallel a smart contract code and an ODRL description of a policy
and link them together in a way that instantiating a contract amounts to simultaneously entering a new
smart contract into the distributed ledger, and into the knowledge graph.

Here we include only the ODRL classes and properties which are relevant for operating components other
than the smart contract executor, thus ignoring, for the moment, the intricacies of the policy language.
The whole of ODRL, as described in the previous chapter, is however part of the TRUSTS-IM.

Classes of entities

Table 17: Contracts: Classes of entities

Class Name Description URI

Policy A formalized description of a contract
template or instance. From this, both a
human readable text and a machine-
actionable smart contract can be generated

odrl:Policy

⌙Contract Template Blank invoice that is filled up for each
purchase

trusts:contractTemplate

⌙Contracts instance Has concrete date, buyer, money “invoice
number”

trusts:contractInstance

D3.7 Data Governance, TRUSTS Knowledge Graph I

© TRUSTS, 2021 Page | 50

Relationships between these entities

Table 18: Contracts: Relationships between entities

Domain Range Relation URI

Organizations Network Peers A network peer belongs
to an organization

trusts:blockchainPeer

trusts:contractInstance trusts:contractTemplate A contract instance is
derived from a contract
template

trusts:contractDerivedFrom

ids:representation contract template One or more contract
templates from where
contract instances for the
asset can be created

odrl:hasPolicy

ids:artifact trusts:contractInstance A given artifact can have
its usage regulated by a
specific contract instance

ids:contract

Properties of entities

Table 19: Contracts: Properties of entities

Classes Property Description URI

trusts:contractInstance textual
representation

A contract instance can be
rendered into human-readable
text

ids:contractDocument

trusts:contractInstance programmatic
representation

A contract instance can have a
programmatic representation.
This property points to its ID in,
e.g., a Blockchain distributed
ledger.

trusts:smartContractID

trusts:contractInstance hash A contract instance can have an
associated hash value of its
programmatic representation

trusts:smartContractHash

D3.7 Data Governance, TRUSTS Knowledge Graph I

© TRUSTS, 2021 Page | 51

5.6 External Sources

In order to investigate the importance of individual classes and properties for interoperability, it was
analysed which fields are already used by existing data markets. The following additional classes and
properties were identified.

The interoperability solution envisaged in D3.4 leverages a taxonomy of business models for datamarkets
[8]. Consequently, we indicate this aspect by using the abbreviation “tdm:...” (Taxonomy of Data Markets)
in respective URIs.

Classes of entities

Table 20: External Sources: Classes of entities

Class Name Description URI

Dataset A collection of data, published or
curated by a single agent, and
available for access or download in
one or more representations.

dcat:Dataset

Participant The member of the TRUSTS platform
who is harvesting an external data
source

ids:Participant

Provider An external provider of resources ids:Provider

Relationships between these entities

Table 21: External Sources: Relationships between entities

Domain Range Relation URI

Participant Participant Smart contract tdm:Smartcontract

Participant Provider Platform sponsor tdm:Platformsponsor

Participant Data service Offers data service tdm:offersdataservice

Participant Provider Contact affiliation trusts:contactaffiliation

D3.7 Data Governance, TRUSTS Knowledge Graph I

© TRUSTS, 2021 Page | 52

Properties of entitie

Table 22: External Sources: Properties of entities

Classes Property Description URI

Provider Country Country of data market tdm:Country

Provider Data market
description

Description of data market tdm:Datamarketdescription

Provider Payment
currency

Payment currency tdm:Paymentcurrency

Provider Website Website of data market tdm:Website

Provider Price
discovery

Type of price discovery (e.g., negotiation, set
by buyers)

tdm:Pricediscovery

Provider Revenue
model

Type of revenue model (e.g., asset sales,
commissions)

tdm:Revenuemodel

Provider Matching
mechanism

Type of matching mechanism (e.g., many-to-
many, many-to-one)

tdm:Matchingmechanism

Provider Marketplace
participants

Type of marketplace participants (e.g., Any,
B2B, C2B)

tdm:Marketplaceparticipants

Provider Platform
architecture

Architecture of data market (centralized,
decentralized)

tdm:Platformarchitecture

Provider contact Name of data market contact trusts:contact

D3.7 Data Governance, TRUSTS Knowledge Graph I

© TRUSTS, 2021 Page | 53

6 Conclusions and Next Actions

The TRUSTS KG will constitute the storage of metadata for driving the different functionalities of the
TRUSTS platform. Any component which requires information about another component, asset,
participant or contract can query the KG to acquire this information and act upon it.

The TRUST-IM which was presented in this document constitutes the schema of the TRUSTS KG. By being
provided with formally defined schema, with explicit semantics, the statements contained in the KG can
be unambiguously interpreted by the different components. Additionally, any external systems
interoperating with the TRUSTS platform will benefit from this formalized description in order to react
adequately to metadata exchanged with TRUSTS.

This document presents only the schema, that is, the shape of the TRUSTS KG. As this KG becomes
populated with metadata, and as this metadata is acted upon, this schema will most likely be refined.
Further refinement and adjustment will occur as a result of the parallel evolution of the other schemata
in which the TRUSTS-IM is based on, especially the IDS-IM. Continuation of the exchange with the IDS-IM
working group will be necessary to guarantee smooth integration between the two initiatives.

In the upcoming months, the different pipelines for the population and use of metadata will be outlined
and deployed. For this, a series of technological developments will also be undertaken, based on existing
infrastructure from IDS and DMA projects. The next report on the TRUSTS KG will include the above-
mentioned refinements to the information model, as well as reports on the operation of metadata
ingestion and consumption. Finally, the tests of interoperability with EOSC and GAIA-X will also bring new
insights, and the results of this information exchanges will also be reported upon.

Another important aspect of metadata management that will be addressed during the remainder of the
project is the scalability of the Knowledge Graph as a centralized metadata storage. In particular, when
millions of assets are present in the catalogue, and every transaction triggers the registration of a new
contract instance, it can be expected that the limits of triplestores and graph databases will be reached.
As already deployed in the current status of the platform, a layer of caching based on a document indexed
(Apache Solr) can be put on top of the KG for cataloguing purposes, that is, to power the search
mechanisms. Further caching mechanisms, coupled with replication of relevant segments of the TRUSTS-
KG in the individual platform nodes, and processing using big data tools, will also be investigated and
reported upon in the final deliverable.

The flexibility that comes with a knowledge graph, its fluidly evolving schema and the way it can be linked
to external data sources allows for further extensions by use of additional services, without affecting the
metadata ingestion mechanism already in place. For example, machine translation of literals in the graph
(e.g., names, descriptions, etc.), coupled with multilingual vocabularies, can be used to turn the catalogue
of the TRUSTS platform into a truly multilingual one. Furthermore, smart information extraction
mechanisms that couple NLP with the information contained in the graph can aid in discovery and
recommendation by linking resources in TRUSTS with those in external knowledge graphs.

D3.7 Data Governance, TRUSTS Knowledge Graph I

© TRUSTS, 2021 Page | 54

7 References

[1] Hogan, A., et al. (2020). Knowledge graphs. arXiv preprint arXiv:2003.02320.

[2] Bader, S., et. al (2020, November). The International Data Spaces Information Model–An Ontology for Sovereign
Exchange of Digital Content. In International Semantic Web Conference (pp. 176-192). Springer, Cham.

[3] Pellegrini, T., Mireles, V., Steyskal, S., Panasiuk, O., Fensel, A., & Kirrane, S. (2018). Automated rights clearance
using semantic web technologies: The DALICC framework. In Semantic Applications (pp. 203-218). Springer Vieweg,
Berlin, Heidelberg.

[4] Ben Ellefi, M., Bellahsene, Z., Breslin, J. G., Demidova, E., Dietze, S., Szymański, J., & Todorov, K. (2018). RDF
dataset profiling–a survey of features, methods, vocabularies and applications. Semantic Web, 9(5), 677-705.

[5] Ivanschitz, B. P., Lampoltshammer, T. J., Mireles, V., Revenko, A., Schlarb, S., & Thurnay, L. (2018). A data market
with decentralized repositories.

[6] Lagoze, C., & Van de Sompel, H. (2001, January). The Open Archives Initiative: Building a low-barrier
interoperability framework. In Proceedings of the 1st ACM/IEEE-CS joint conference on Digital libraries (pp. 54-62).

[7] Schütte, J., Brost, G. & Wessel, S. (2018). Datensouveränität im Internet der Dinge – Der Trusted Connector im
Industrial Data Space. Whitepaper, Fraunhofer AISEC. (https://arxiv.org/pdf/1804.09442.pdf)

[8] van de Ven, M.R. (2020). Creating a Taxonomy of Business Models for Data Marketplaces. Master Thesis, TU
Delft Technology, Policy and Management.

[9] Chekry, A., ORICHE, A., KHALDI, M., & ELKADIRI, K. (2011). Semantic web technologies for the reuse and
adaptation of educational documents in e-learning. In The 2nd International Conference on Multimedia Computing
and Systems.

[10] Hasnain, A., & Rebholz-Schuhmann, D. (2018, June). Assessing FAIR data principles against the 5-star open data
principles. In European Semantic Web Conference (pp. 469-477). Springer, Cham.

https://arxiv.org/pdf/1804.09442.pdf

