

This project has received funding from the European Union's Horizon 2020
research and innovation programme under grant agreement No 871481

D3.12 Profiles and Brokerage

Authors: Dominik Kowald, Dieter Theiler, Peter Müllner, Stefan Schmerda
(KNOW)

Additional Information: -

June 2021

Ref. Ares(2021)4095899 - 23/06/2021

D3.12 Profiles and Brokerage

© TRUSTS, 2021 Page | 2

TRUSTS Trusted Secure Data Sharing Space

D3.12 Profiles and Brokerage

 Document Summary Information

Grant Agreement
No

871481 Acronym TRUSTS

Full Title TRUSTS Trusted Secure Data Sharing Space

Start Date 01/01/2020 Duration 36 months

Project URL https://trusts-data.eu/

Deliverable D3.12 Profiles and Brokerage

Work Package WP3

Contractual due
date

30/06/2021 Actual submission date 30/06/2021

Nature Demonstrator Dissemination Level Public

Lead Beneficiary KNOW

Responsible Author Dominik Kowald

Contributions from Dieter Theiler, Peter Müllner, Stefan Schmerda (KNOW)

https://trusts-data.eu/

D3.12 Profiles and Brokerage

© TRUSTS, 2021 Page | 3

o Revision history (including peer reviewing & quality control)

Version
Issue
Date

%
Complete1

Changes Contributor(s)

v1.0 21/04/
2021

5 Deliverable Structure Dominik Kowald (KNOW)

V1.1 26/04/
2021

10 Description of functional and
architectural requirements

Dominik Kowald (KNOW)

V1.2 07/05/
2021

30 First draft of System Architecture,
Data Scheme and Service Interface

Stefan Schmerda (KNOW)

V1.3 10/05/
2021

35 Offline Evaluation Plan and Research Peter Müllner (KNOW)

V1.4 17/05/
2021

55 Introduction to Recommender
Systems in Data Markets

Stefan Schmerda (KNOW)

V1.5 21/05/
2021

80 Recommender Systems in Data
Markets and Platforms, Introduction
and Conclusion

Stefan Schmerda, Dominik
Kowald (KNOW)

V1.6 26/05/
2021

85% System Architecture, Data Scheme
and Service Interface

Dieter Theiler, Peter
Müllner, Dominik Kowald
(KNOW)

V2.0 23/06/
2021

100% Incorporated reviewer feedback Dieter Theiler, Peter
Müllner, Stefan Schmerda,
Dominik Kowald (KNOW)

1 According to TRUSTS Quality Assurance Process:

1. to be declared

D3.12 Profiles and Brokerage

© TRUSTS, 2021 Page | 4

o Disclaimer

The content of the publication herein is the sole responsibility of the publishers and it does not necessarily

represent the views expressed by the European Commission or its services.

While the information contained in the documents is believed to be accurate, the authors(s) or any other

participant in the TRUSTS consortium make no warranty of any kind with regard to this material including, but

not limited to the implied warranties of merchantability and fitness for a particular purpose.

Neither the TRUSTS Consortium nor any of its members, their officers, employees or agents shall be responsible

or liable in negligence or otherwise howsoever in respect of any inaccuracy or omission herein.

Without derogating from the generality of the foregoing neither the TRUSTS Consortium nor any of its members,

their officers, employees or agents shall be liable for any direct or indirect or consequential loss or damage caused

by or arising from any information advice or inaccuracy or omission herein.

o Copyright message

© TRUSTS, 2020-2022. This deliverable contains original unpublished work except where clearly indicated

otherwise. Acknowledgement of previously published material and of the

work of others has been made through appropriate citation, quotation or both. Reproduction is authorised provided

the source is acknowledged.

D3.12 Profiles and Brokerage

© TRUSTS, 2021 Page | 5

o Table of Contents

 Document Summary Information 2

o Revision history (including peer reviewing & quality control) 3

o Disclaimer 4

o Copyright message 4

o Table of Contents 5

o List of Figures 6

o List of Tables 7

o Glossary of terms and abbreviations used 8

1 Executive Summary 9

2 Introduction 9

2.1 Mapping Project Outputs 10

2.2 Deliverable Overview and Report Structure 11

3 Recommender Systems in Data Markets and Platforms 12

4 TRUSTS Recommender System 14

4.1 Functional Requirements, Recommendation Use Cases and Architectural Requirements 15

4.2 System Architecture, Data Scheme, and Service Interfaces 17

4.2.1 ScaR and its Modules 17

4.2.2 REST-Services 18

4.2.2.1 Data Resource 19

4.2.2.2 Interaction Resource 21

4.2.2.3 Recommender Resource 23

4.2.3 Backend Database – Apache Solr 27

4.2.4 Recommendation Algorithms 32

4.3 Offline Evaluation using OpenML Data 33

4.4 Research: Privacy-Preserving Recommendations 35

5 Conclusions and Next Actions 36

6 References 37

D3.12 Profiles and Brokerage

© TRUSTS, 2021 Page | 6

o List of Figures

Figure 1: Overview of DMA ecosystem with broker/recommender system for matchmaking users,
datasets and services. ... 14

Figure 2: Recommendation use cases in TRUSTS. ... 15

Figure 3: System architecture of TRUSTS recommender system. ... 18

Figure 4: Overview of the available REST-Services.. 19

Figure 5: Items Core .. 28

Figure 6: Users Core .. 30

Figure 7: Interactions Core .. 30

Figure 8: Feedbacks Core .. 31

Figure 9: The connection between runs and datasets. ... 34

Figure 10: MetaMF .. 36

Figure 11: NoMetaMF ... 36

file:///C:/Users/dkowald/Nextcloud/SC_Team/Projects/TRUSTS/D3_12_KNOW.docx%23_Toc75355193

D3.12 Profiles and Brokerage

© TRUSTS, 2021 Page | 7

o List of Tables

Table 1: Adherence to TRUSTS GA Deliverable & Tasks Descriptions. .. 11

Table 2: Functional requirements of the TRUSTS recommender system. .. 15

Table 3: Architectural requirements of the TRUSTS recommender system. .. 16

Table 4: DataResponse Object .. 20

Table 5: Interaction Resource - Basic Entity .. 21

Table 6: Dataset Identifier ... 22

Table 7: Service Identifier .. 22

Table 8: InteractionResponse Object .. 22

Table 9: Recommender Resource – GenRecoParameter .. 24

Table 10: RecommendationResponse Object ... 24

Table 11: DatasetDatasetRecoParameter Object ... 25

Table 12: DatasetServiceRecoParameter Object .. 25

Table 13: DatasetUserRecoParameter Object .. 25

Table 14: ServiceDatasetRecoParameter Object .. 26

Table 15: ServiceServiceRecoParameter Object ... 26

Table 16: ServiceUserRecoParameter Object ... 27

Table 17: Solr Cores ... 27

Table 18: Items Core – Field Description ... 29

Table 19: Users Core – Field Description ... 30

Table 20: Interactions Core – Field Description .. 30

Table 21: Feedbacks Core – Field Description ... 31

Table 22: Statistics of our DUD dataset, which comprises interactions between users and datasets. 34

Table 23: Statistics of our DUA dataset, which comprises interactions between users and algorithms...... 34

Table 24: Statistics of our DDA dataset, which comprises interactions between datasets and algorithms. 34

D3.12 Profiles and Brokerage

© TRUSTS, 2021 Page | 8

o Glossary of terms and abbreviations used

Abbreviation / Term Description

DMA Data Market Austria

CF Collaborative Filtering

MP Most Popular

CBF Content-based Filtering

SP Service Provider

DML Data Modification Layer

IDS International Data Spaces

RE Recommender Engine

RC Recommender Customizer

REV Recommender Evaluator

ML Machine Learning

KNN K-Nearest Neighbors

D3.12 Profiles and Brokerage

© TRUSTS, 2021 Page | 9

1 Executive Summary

The creation and enrichment of user and corporate profiles is the basis for developing brokerage services

that aim to provide recommendations for interlinking users with various offers available in the TRUSTS

platform, i.e., services and datasets. Thus, the aim of this deliverable is to describe the current state of

the TRUSTS recommender system that is developed for these purposes in course of T3.6.

Based on the functional requirements identified in D2.2, we have defined architectural requirements as

well as six recommendation use cases for the TRUSTS recommender system. This includes (i) the

recommendation of datasets to users, (ii) the recommendation of services to users, (iii) the

recommendation of datasets to services, (iv) the recommendation of services to datasets, (iv) the

recommendation of datasets to datasets, and (vi) the recommendation of services to services.

Furthermore, we have designed a scalable recommendation architecture that is capable of supporting

these use cases. Apart from that, our proposed recommendation architecture can consume data

generated in the TRUSTS platform in line with the IDS information model. In order to test and fine-tune

our recommendation algorithms, we also propose an offline evaluation plan using data gathered from

the OpenML platform. OpenML is a machine learning platform that allows users to share datasets and

services and thus, provides an ideal data source for offline recommendation experiments. Finally, we

present initial results of a privacy-aware recommendation experiment, in which we aim to provide

quality recommendations with a limited amount of private user data.

Taken together, the purpose of this deliverable is to demonstrate the capabilities of the TRUSTS

recommender system and also to document the underlying technical specifications of its service

interfaces. This is complemented by the presentation of an offline evaluation plan as well as initial

research results in the area of privacy-aware recommender systems.

2 Introduction

Data is a substantial factor in the economy of the 21st century. It is a driver for growth and innovation
and penetrates ever more and more aspects of private and corporate life. In fact, it has become an
important input in many commodities (e.g., the internet of things) and services. The data economy is
generating value from gathered information which was not possible even a few years ago and the
current prospect is that this will even intensify further.

Besides all its benefits data also has two major drawbacks which prevents it from fulfilling its
transformational potential. Firstly, high-quality data is hard to come by and secondly it is even harder to
extract valuable information from it. These two points shall be briefly discussed.

The inaccessibility of good data partly stems from the fact that most of it is stored in data silos owned by
big tech companies (e.g., Amazon, Facebook, Google), which gain an advantage over their competitors
by keeping the data to themselves, or by so called data aggregators (e.g., Bloomberg, Reuters) who act
as de facto monopolists and provide their services at high prices. As a result, data cannot be seen as a
commodity, which can be sold or bought in a frictionless manner, which is detrimental to its distribution.
Another difficulty hindering broader access is the lack of transparency regarding property rights, which

D3.12 Profiles and Brokerage

© TRUSTS, 2021 Page | 10

makes it difficult to determine who owns what kind of data. Potential legal repercussions therefore act
as a hindrance to data transfer. Finally, as a result of the preceding arguments, there is often no price, or
one that does not reflect actual demand and supply, on data. Because of this fact there might not be
enough incentives to distribute or even create data in the first place.

The second drawback is the complexity and difficulty of extracting valuable insights from data. To apply
the right algorithm for a given dataset and use case, it requires well-founded knowledge of data science,
statistics and mathematics as well as domain knowledge. Personnel with these skills is rare and often too
expensive for small and medium sized firms. This circumstance makes it difficult for all but the largest
corporations to reap the full benefits of the data economy.

The two main drawbacks discussed above can both be addressed by establishing a trusted marketplace
for data, which is the vision of TRUSTS. Not only would a data market bring together the producers and
consumers of data but also the experts developing and applying algorithms. The monetary incentives
would ensure that the demand roughly matches the supply and that the quality of goods (i.e., datasets
and services) achieve a constantly high level. In addition, transactions would be contract based, clearly
reflecting property rights.

Markets are well suited for matching tasks between different actors but also require a high level of
knowledge about the respective matter to live up to their full potential. The knowledge intensity is
particular demanding when trading data and algorithms whose value for non-specialists often does not
manifest itself at first glance. So, actors in those markets are prone to imperfect information. Therefore,
to drive down transaction costs and to reduce the potential of market failure, a brokering instance in
form of a recommender system is needed.

The development and evaluation of this recommender system is the main objective of T3.6. Specifically,
TRUSTS requires that (i) the system should be able to provide datasets and services recommendations to
its users pertaining to their profile and needs, (ii) the system should employ matchmaking mechanisms
through which hosted datasets are matched with hosted services (e.g., suitable for their analysis) and
vice versa, and (iii) the system should identify and match related datasets so as to provide combined and
enriched data. We transferred these functional requirements to recommendation use cases, which we
further transferred to architectural requirements for the TRUSTS platform. Based on these architectural
requirements, we designed a recommendation system architecture, a data scheme as well as service
interfaces. Apart from that, we also worked on an offline evaluation plan using data gathered from the
machine learning platform OpenML and conducted research in the area of privacy-aware
recommendations.

Finally, it should be noted that in TRUSTS we also have applications (i.e., apps) but from the perspective
of the recommender system services and applications can be treated interchangeably. Thus, in this
deliverable we solely talk about services but also mean applications. The same is true for users and
corporates, and thus we solely use the term user in this deliverable but also mean corporates.

2.1 Mapping Project Outputs

Purpose of this section is to map the TRUSTS Grant Agreement commitments, both within the formal
deliverable and task description, against the project’s respective outputs and work performed.

D3.12 Profiles and Brokerage

© TRUSTS, 2021 Page | 11

Table 1: Adherence to TRUSTS GA Deliverable & Tasks Descriptions.

TRUSTS Task Respective
Document
Chapter(s)

Justification

T3.6.:
User and
corporate
profiles
and
brokerage

Based on the work in T3.4, dataset and service
descriptions and interactions with the platform
are processed by information extraction
algorithms. The extracted information is the basis
for recommendations and matchmaking
algorithms with user and corporate profiles. With
regard to datasets, services for the analysis of
this data are suggested or other data for
enrichment and combination might be suggested.
Similarly, with regard to services, potential input
data as well as pre- and post-processing services
might be suggested. The extracted information
can be used to improve descriptions and profiles
of datasets and services. This leads to brokerage
activities, where a mapping between offerings
and demands of data and services is made. If no
valid mappings can be established, suggestions
are generated to publish new data or services.

Section 4.1.

Section 4.2.

Section 4.3.

Section 4.4.

The sections
describe the
whole design
process of the
TRUSTS
recommender
system, starting
with the
requirements
and use cases,
over the system
architecture and
service
interfaces, to
the evaluation
plan and
research results.

TRUSTS Deliverable

D3.12: Profiles and Brokerage I

This deliverable constitutes demonstrator systems that show practical application of the developed
algorithms to production data. It identifies suitable recommendation use cases and applicable
algorithms and datasets to support them, as well as a proof-of concept demonstrator.

2.2 Deliverable Overview and Report Structure

In the following, we give an overview of the structure of this demonstrator deliverable. In Chapter 3, we
give an overview about existing recommender systems solutions in data markets and data platforms,
including the Data Market Austria recommender systems. Subsequently, in Chapter 4, we outline the
functional requirements (see also D2.2.) as well as the architectural requirements (see also D2.6.) for the
TRUSTS recommender system. Additionally, Chapter 4 also describes the system architecture, data
scheme and service interface of our TRUSTS recommender system. Finally, Chapter 4 also includes an
offline evaluation plan using data gathered from the OpenML platform as well as initial research results
from the area of privacy-aware recommender systems. We close this deliverable in Chapter 5 with a
summary of our findings and contributions as well as an outlook into our future work.

D3.12 Profiles and Brokerage

© TRUSTS, 2021 Page | 12

3 Recommender Systems in Data Markets and Platforms

The contribution of T3.6. to TRUSTS is a recommender system with the purpose to function as the
required brokering instance. Users will be presented with datasets and services based on their
preferences derived from past interactions on the platform.

The approach of utilizing recommender systems for data markets is rather novel and does not have a
broad corpus of related work. Notwithstanding this fact, the following paragraphs try to classify the topic
at hand and discuss related fields.

The literature explicitly concerned with dataset recommendation is scarce, when compared to the ones
about movie, music or e-commerce. Lately, however, the interest in it is growing. This stems from the
fact that the number of available datasets, publicly available over the internet or stored in private
databases, has increased rapidly over the last decade. The overload of information therefore makes it
mandatory for firms and researchers to apply filtering methods, hence the turn to recommender systems
for this particular use case.

Jess et al. (2015) proposed a recommender system for the industrial domain (i.e., supply chain-,
financial- or human resources- data) and subsequently evaluated it using artificial data. In this context
industrial decision makers should be provided with similar data tables based on the one they are
currently working on in order to generate additional value. Three different engines (user-based
collaborative filtering, item-based collaborative filtering, and content-based filtering) are applied and
their results aggregated to form the final set of recommendations.

Patra et al. (2020) utilized a content-based approach to suggest datasets from the genetics domain. Here
the similarity between aggregated metadata of different interest clusters, derived from a researcher’s
publication profile, and the metadata of relevant datasets is calculated to provide recommendations.

Traditional algorithms like collaborative and contend-based filtering often fail in situations where there is
a lack of initial usage data from which recommendations can be derived. This is called the cold-start
problem in the literature and is especially prevalent for dataset recommenders with a relatively small
user base. This circumstance is tackled in (Bahls et al., 2012) where the authors outline and propose a
knowledge-based approach called “case-based reasoning”. Here certain similarity measures reflecting
the user’s understanding of utility instead of explicit historical usage data are applied to generate
recommendations.

A more implicit approach to the dataset recommendation literature is the one about database query
recommendations. Here instead of explicitly suggesting datasets, users of databases are provided with
queries which can be utilized to extract relevant information. Both (Erinaki et al., 2014) and
(Chatzopoulou et al., 2009) apply collaborative filtering to achieve this while (Erinaki and Patel, 2015)
uses matrix factorization.

A distantly related field to recommender systems is the one about search engines. Chen et al. (2018)
developed a dataset discovery and retrieval system comprising repositories of the biomedical domain.
The system incorporates functionalities for automatic dataset metadata extraction and indexing as well
as a natural language processing enhanced search engine based on query expansion. In (Singhal and
Srivastava, 2017) a non domain specific search engine for research datasets considering their application
context was proposed. Here user profiles containing a set of research papers and keywords linked to
information from academic search engines are being utilized.

D3.12 Profiles and Brokerage

© TRUSTS, 2021 Page | 13

While the literature about dataset recommenders is steadily growing there is less work regarding
recommendation systems for machine learning algorithms and data analytics services. This is mainly due
to the fact that algorithms per se, when user/item interactions are unavailable, are not suitable for
comparison via similarity-based metrics. Notwithstanding this, there is the related literature of
automated machine learning, which aims to automatically find the best data mining pipelines, ranging
from pre-processing to modelling, for a given dataset or domain. The approach of (Zschech et al., 2019),
for example outlines a text based assistant system for data analysis tasks. It takes a domain specific
problem description and a general description of the required methods (e.g., classification or clustering),
both in natural language form, as inputs and returns a recommended data mining algorithm and the
most suitable data scheme for it. In (Vainshtein et al., 2018) the metadata contained in dataset
descriptions, statistics derived from the dataset itself and word embeddings, representing a corpus of
academic literature, are used to select the most suitable classification algorithm for a given dataset. In
(Song et al., 2012) a recommender was proposed on the assumption that similar datasets are also similar
in their respective classification algorithm performances. Therefore, feature vectors containing structural
and statistical information as well as the best performing classification algorithms (based on accuracy,
etc.) of a set of historical datasets were extracted. In a next step KNN is applied to a new dataset to find
the most similar ones from the original pool. Algorithm recommendation is then conducted based on the
best performing algorithms of the candidate sets.

An example of a particular data market, which incorporates a recommender system for both datasets
and services is the Data Market Austria2 (DMA). In DMA, a recommender system was developed, which
acts as a broker to connect different stakeholders in a data market setting such as service providers, data
providers and users as depicted in Figure 1. This recommender system was based on the scalable
recommendation framework ScaR3. Specifically, it was the aim to connect users, datasets and services
using two interaction-based recommendation algorithms, i.e., Most Popular (MP) and Collaborative
Filtering (CF). The recommendation use cases were evaluated on the Meta Kaggle dataset4. The authors
found that the recommendation quality strongly depends on the complexity of the recommendation
task. Thus, in cases where non-user entities are recommended to other non-user entities (e.g., datasets
to services) the interaction-based approaches MP and CF did not provide accurate recommendations.

2
 https://datamarket.at/en/

3
 http://scar.know-center.tugraz.at/

4
 https://www.kaggle.com/kaggle/meta-kaggle

https://datamarket.at/en/
http://scar.know-center.tugraz.at/
https://www.kaggle.com/kaggle/meta-kaggle

D3.12 Profiles and Brokerage

© TRUSTS, 2021 Page | 14

Figure 1: Overview of DMA ecosystem with broker/recommender system for matchmaking users, datasets and services.

In TRUSTS, we will build upon this work and will also use the ScaR recommendation framework, which
proved its useability in the DMA project. We also plan to validate the results obtained in DMA using a
dataset gathered from OpenML (see Section Fehler! Verweisquelle konnte nicht gefunden werden.).
Additionally, we will develop recommendation use cases that connect two non-user entities of the same
type with each other (e.g., datasets to datasets) and we will also investigate content-based filtering
recommendation algorithms (see Section 4.1).

4 TRUSTS Recommender System

In this section, we describe the recommender system envisioned in TRUSTS. This includes (i) its
functional as well as architectural requirements and use cases, (ii) its system architecture, data scheme
and service interfaces, and (iii) the evaluation plan.

D3.12 Profiles and Brokerage

© TRUSTS, 2021 Page | 15

4.1 Functional Requirements, Recommendation Use Cases and Architectural
Requirements

The functional requirements of the TRUSTS recommender system have been developed in course of WP2
and are documented in detail in D2.2. In Table 2, we summarize these functional requirements for our
recommender system.

Table 2: Functional requirements of the TRUSTS recommender system.

Recommender system: Functional requirements

FR6 The system should be able to provide datasets and services recommendations to its users
pertaining to their profile and needs

FR7 The system should employ matchmaking mechanisms through which hosted datasets are
matched with hosted services (e.g., suitable for their analysis) and vice versa.

FR8 The system should identify and match related datasets so as to provide combined and
enriched data

Based on these functional requirements, we derived six recommendation use cases that fulfill these
requirements. They are visualized in Figure 2. Here, RUC1 and RUC2 (i.e., recommending
datasets/services to users) address FR6, RUC3 and RUC4 (i.e., recommending datasets to services and
vice versa) address FR7, and RUC5 and RUC6 (i.e., recommending similar datasets/services for a given
dataset/service) address FR8.

Figure 2: Recommendation use cases in TRUSTS.

D3.12 Profiles and Brokerage

© TRUSTS, 2021 Page | 16

In order to implement these use cases, we define architectural requirements to the TRUSTS
infrastructure that are also described in D2.6. Table 3 gives an overview of these architectural
requirements.

Table 3: Architectural requirements of the TRUSTS recommender system.

Recommender system: Architectural requirements

AR3.6.1

Notification mechanism to provide data for the recommender system.
In order to provide the recommender system with data for training its algorithms, the TRUSTS
platform should provide a mechanism to transfer data to the recommender system.
Therefore, the recommender system will provide REST-based services to add (i) metadata of
datasets, (ii) metadata of services, (iii) metadata of users, and (iv) interactions between those
entities (e.g., if a user downloads a dataset). The TRUSTS broker and the TRUSTS platform
should use these services in order to notify the recommender system when new entities or
interactions come into the platform or when existing entities are changed.

AR3.6.2

User interface component to show recommendations.
For visualizing recommendation results to users, the TRUSTS platform should provide a user
interface component that is capable of showing an ordered list of recommendations. For this
purpose, the recommender system will provide REST-based services for six recommendation
settings: (i) recommend datasets to users, (ii) recommend services to users, (iii) recommend
datasets to services, (iv) recommend services to datasets, (v) recommend datasets to
datasets, and (vi) recommend services to services. The TRUSTS platform needs to use these
services to query recommendations by providing parameters such as the current user, the
currently viewed dataset or service, one of the six mentioned use cases, the algorithm (e.g.,
collaborative filtering or content-based filtering) and the number of recommendations to
generate (the default value is 10).

AR3.6.3

User interface component to interact with recommendations.
When recommendations are shown to users, the TRUSTS platform should also allow them to
interact with the recommendations, i.e., click on the recommendations to get additional
information. Thus, for every recommendation request, the recommender system will
generate a unique recommendation ID that is provided with the list of recommendations. The
TRUSTS platform needs to store this recommendation ID and whenever a user interacts with a
recommended entity informs the recommender system about this interaction, which is
interpreted as feedback to the recommendation. With this, the recommender system is able
to evaluate the quality of the recommendations and adapt the algorithms if necessary.
Furthermore, this allows us to conduct A/B tests and compare the quality of two types of
algorithms (e.g., collaborative filtering and content-based filtering).

In the current architectural vision of the TRUSTS platform, as described in deliverable D2.6, the sources
of the information mentioned above are threefold. First, the Broker which will register metadata on
assets will make available messages (or relevant parts thereof) regarding creation/modification of
metadata to the recommender system. Second, the contracting system, which will serve as a distributed
ledger of transactions, will be the source of data regarding user-asset interactions. Finally, the different
user interfaces of the platform will provide information regarding the interactions.

D3.12 Profiles and Brokerage

© TRUSTS, 2021 Page | 17

4.2 System Architecture, Data Scheme, and Service Interfaces

This section gives a technical overview of all components and services of our recommender system.

4.2.1 ScaR and its Modules

As mentioned earlier, the system architecture used in the TRUSTS recommender system for data
markets is based on the scalable recommendation framework ScaR. Its general infrastructure and
modules are depicted in Figure 3. The following briefly elaborates on the function of each of the
submodules and their interconnections to each other.

Service Provider (SP): The SP functions as the main entry- and communication-point between the
TRUSTS platform and the recommender system. Its RESTful services allow for requesting
recommendations for one of the six use cases described in Table 3 as well as uploading dataset/service-,
user- and interaction-metadata to the backend database.

Data Modification Layer (DML): The DML serves as data transfer intermediary between the individual
ScaR modules and performs CRUD (create, retrieve, update and delete) operations in interaction with
Apache Solr 5. This particular database is being utilized for its multi core system – incorporating item,
user, interaction and feedback data – and provides scalability as well as support for (near) real-time data
retrieval.

Recommender Engine (RE): The RE is the centerpiece module of ScaR since its purpose is to calculate
recommendations. Herein Apache Solr’s built-in data structures are being leveraged in order to allow for
efficient similarity calculation. The RE supports standard approaches like collaborative and contend-
based filtering as well as hybrids between them. In addition, other algorithms can be added as needed
depending on the particular use case.

Recommender Customizer (RC): The RC module holds customization profiles for each of the
recommendation algorithms. It allows for an easy adjustment of the individual input parameters (e.g.,
the number of recommended items) by the admins of TRUSTS. The RE automatically takes into account
those respective profiles which therefore have a direct effect on the calculation of the
recommendations.

Recommender Evaluator (REV): The REV is used for evaluating the algorithms applied by the RE. When
triggered it runs an offline evaluation based on training/test set splits or supports the execution of A/B
tests. In the TRUSTS project, we will focus on offline evaluation studies.

5
 https://solr.apache.org/

https://solr.apache.org/

D3.12 Profiles and Brokerage

© TRUSTS, 2021 Page | 18

Figure 3: System architecture of TRUSTS recommender system.

4.2.2 REST-Services

This section provides an overview over the REST-API which can be subcategorized into (i) Data-Ingestion-
and (ii) Recommendation-Services. The former encompasses calls to the following REST-Resources:

 Data Resource: handles the storage of metadata related to datasets, services and users.

 Interaction Resource: This service handles the storage of buy-, view- (i.e., click) and download-
interactions related to datasets and services. Please note that these three types of interactions
are examples of interaction types that we expect to have in the TRUSTS platform.

The latter contains one REST-Resource, which is the Recommendation Resource that handles requests of
a pre-specified number of recommendations for one of the six recommendation use cases. Figure 4
depicts the Swagger user interface for the aforementioned REST-Resources including their respective
endpoints which will be described in more detail in the following subsections.

D3.12 Profiles and Brokerage

© TRUSTS, 2021 Page | 19

Figure 4: Overview of the available REST-Services

4.2.2.1 Data Resource

This service is used for uploading metadata of datasets, services and users to the database. It also serves
as filter and extracts recommendation-relevant information of the received payload.

Input Objects: As the IDS-IM (International Data Spaces – Information Model) is designed to foster a
central agreement between different services which share and apply data assets, the input to the Data

D3.12 Profiles and Brokerage

© TRUSTS, 2021 Page | 20

Resource must conform to the specifications of the IDS-IM as defined in the IDS Ontology6 draft. To
adapt to the needs of the TRUSTS project and to ensure compatibility and interoperability, the IDS-IM
will be further refined in the upcoming deliverable D3.7. For data ingestion, objects are based on certain
IDS-IM classes:

 Resource

 App Resource

 Participant

Response Object: The DataResponse object for the data resource is generic and has the properties
depicted in Table 4:

Table 4: DataResponse Object

Response Property Data Type Description

http_status Integer The HTTP response status code.

message String A textual message indicating the
success or failure of the initial

call.

In the following the individual requests to the Data Resource are described:

/data/datasets

A call to this endpoint stores an array of dataset metadata objects in the database of the
recommendation service. Please note that this call will update the metadata of the dataset objects if
they already exist in the database.

Type: POST Request

Input: An array of IDS-IM Resource objects

Response: A DataResponse object

/data/services

A call to this endpoint stores an array of service metadata objects in the database of the
recommendation service. Please note that this call will update the metadata of the services objects if
they already exist in the database.

Type: POST Request

Input: An array of IDS-IM App Resource objects

Response: A DataResponse object

/data/users

6
 https://international-data-spaces-association.github.io/InformationModel/docs/index.html

https://international-data-spaces-association.github.io/InformationModel/docs/index.html

D3.12 Profiles and Brokerage

© TRUSTS, 2021 Page | 21

A call to this endpoint stores an array of user metadata objects in the database of the recommendation
service. Please note that this call will update the metadata of the user‘s objects if they already exist in
the database.

Type: POST Request

Input: An array of IDS-IM Participant objects

Response: A DataResponse object

4.2.2.2 Interaction Resource

This service is used for uploading buy-, view- and download-interactions of respective items, which can
be datasets or services.

Input Object: The input object consists of properties which apply to all endpoints of the interaction
resource as well as an identifier property which varies with the actual interaction item type. Therefore,
the Basic Entity object as described in Table 5, constitutes the basis for different interaction types

and is extended with either a specific Dataset Identifier or a Service Identifier to form
the final payload object:

 Dataset Interaction Basic Entity ∪ Dataset Identifier

 Service Interaction Basic Entity ∪ Service Identifier

Table 5, Table 6, Table 7 show the object properties in detail:

Table 5: Interaction Resource - Basic Entity

Body-Parameter Data Type Required / Optional Description

id String Required The id of the
interaction.

recommender Id String Optional The id of the
recommendation which
resulted in the current

interaction.

timestamp Long Required The timestamp
indicates at which point

in time a certain
interaction was made.
It is based on the Unix
format (milliseconds

since 1970-01-
01T00:00:00).

userId String Required The id of the user who
is responsible for the

interaction.

D3.12 Profiles and Brokerage

© TRUSTS, 2021 Page | 22

Table 6: Dataset Identifier

Body-Parameter Data Type Required / Optional Description

datasetId String Required The id of dataset the
interaction is based on.

Table 7: Service Identifier

Body-Parameter Data Type Required / Optional Description

serviceId String Required The id of the service
the interaction is based

on.

Response Object: The InteractionResponse object for the interaction resource is generic and has
the properties depicted in Table 8:

Table 8: InteractionResponse Object

Response Property Data Type Description

http_status Integer The HTTP response status code.

message String A textual message indicating the
success or failure of the initial

call.

In the following the individual requests to the Interaction Resource are described:

/interaction/buy-dataset

A call to this endpoint stores the metadata of a dataset buy-interaction in the database of the
recommendation service.

Type: POST Request

Input: A Dataset Interaction object

Response: An InteractionResponse object

/interaction/buy-service

A call to this endpoint stores the metadata of a service buy-interaction in the database of the
recommendation service.

Type: POST Request

Input: A Service Interaction object

D3.12 Profiles and Brokerage

© TRUSTS, 2021 Page | 23

Response: An InteractionResponse object

/interaction/download-dataset

A call to this endpoint stores the metadata of a dataset download-interaction in the database of the
recommendation service.

Type: POST Request

Input: A Dataset Interaction object

Response: An InteractionResponse object

/interaction/download-service

A call to this endpoint stores the metadata of a service download-interaction in the database of the
recommendation service.

Type: POST Request

Input: A Service Interaction object

Response: An InteractionResponse object

/interaction/view-dataset

A call to this endpoint stores the metadata of a dataset view-interaction in the database of the
recommendation service.

Type: POST Request

Input: A Dataset Interaction object

Response: An InteractionResponse object

/interaction/view-service

A call to this endpoint stores the metadata of a service view-interaction in the database of the
recommendation service.

Type: POST Request

Input: A Service Interaction object

Response: An InteractionResponse object

4.2.2.3 Recommender Resource

This service is used for requesting recommendations for one of the six recommendation use cases.

Input Parameters: The Recommender Resource takes query string parameters as input. A subset of
those is independent of the endpoint while others vary with it. The variable parameters are listed
individually in the respective endpoint references and need to be combined with the general applicable

ones (GenRecoParameter) depicted in Table 9:

D3.12 Profiles and Brokerage

© TRUSTS, 2021 Page | 24

Table 9: Recommender Resource – GenRecoParameter

Query String
Parameter

Data Type Required / Optional Description

count Integer Optional The number of
recommendations
which should be

generated. The default
value is 10.

userId String Required The id of the user who
requests

recommendations.

Response Object: Every request to the Recommendation Resource returns a
RecommendationResponse object containing the properties depicted in Table 10:

Table 10: RecommendationResponse Object

Response Property Data Type Description

http_status Integer The HTTP response status code.

message String A textual message indicating the
success or failure of the call.

reco_id String The id of the returned
recommendation.

[results] Array of Strings An array of ids identifying the
recommended items.

In the following the individual requests to the Recommender Resource are being described:

/reco/dataset-dataset

A call to this endpoint returns dataset recommendations based on a certain dataset and a user.

Type: Get Request

Input: The general GenRecoParameter set combined with the endpoint specific
DatasetDatasetRecoParameter object depicted in Table 11:

D3.12 Profiles and Brokerage

© TRUSTS, 2021 Page | 25

Table 11: DatasetDatasetRecoParameter Object

Query String
Parameter

Data Type Required / Optional Description

datasetId String Required The id of the dataset on
which the

recommendation is
based on.

Response: A RecommendationResponse object

/reco/dataset-service

A call to this endpoint returns dataset recommendations based on a certain service and a user.

Type: Get Request

Input: The general GenRecoParameter set combined with the endpoint specific

DatasetServiceRecoParameter object depicted in Table 12:

Table 12: DatasetServiceRecoParameter Object

Query String
Parameter

Data Type Required / Optional Description

serviceId String Required The id of the service on
which the

recommendation is
based on.

Response: A RecommendationResponse object

/reco/dataset-user

A call to this endpoint returns dataset recommendations based on a certain user and optionally a
dataset.

Type: Get Request

Input: The general GenRecoParameter set combined with the endpoint specific
DatasetUserRecoParameter object depicted in Table 13:

Table 13: DatasetUserRecoParameter Object

Query String Data Type Required / Optional Description

D3.12 Profiles and Brokerage

© TRUSTS, 2021 Page | 26

Parameter

datasetId String Optional The id of the dataset on
which, in addition to

the user, the
recommendation can

be based on.

Response: A RecommendationResponse object

/reco/service-dataset

A call to this endpoint returns service recommendations based on a certain dataset and a user.

Type: Get Request

Input: The general GenRecoParameter set combined with the endpoint specific
ServiceDatasetRecoParameter object depicted in Table 14:

Table 14: ServiceDatasetRecoParameter Object

Query String
Parameter

Data Type Required / Optional Description

datasetId String Required The id of the dataset on
which the

recommendation is
based on.

Response: A RecommendationResponse object

/reco/service-service

A call to this endpoint returns service recommendations based on a certain service and a user.

Type: Get Request

Input: The general GenRecoParameter set combined with the endpoint specific

ServiceServiceRecoParameter object depicted in Table 15:

Table 15: ServiceServiceRecoParameter Object

Query String
Parameter

Data Type Required / Optional Description

serviceId String Required The id of the service on
which the

D3.12 Profiles and Brokerage

© TRUSTS, 2021 Page | 27

recommendation is
based on.

Response: A RecommendationResponse object

/reco/service-user

A call to this endpoint returns service recommendations based on a certain user and optionally a service.

Type: Get Request

Input: The general GenRecoParameter set combined with the endpoint specific

ServiceUserRecoParameter object depicted in Table 16:

Table 16: ServiceUserRecoParameter Object

Query String
Parameter

Data Type Required / Optional Description

serviced String Optional The id of the service on
which, in addition to

the user, the
recommendation can

be based on.

Response: A RecommendationResponse object

4.2.3 Backend Database – Apache Solr

The current database utilized by the ScaR framework is Apache Solr7. In principial, ScaR is able to work
with different document-based database engines, as the DML module is in charge of
encapsulating the underlying database. So far, Solr was chosen as the main database instance as
it provides two main advantages for the present use case. The first one is its query speed, which
is most relevant for (near) real time applications like recommender systems. The second one is
its ability to seamlessly work with several types of entities. If a project-wide decision different
infrastructure at a level of data storage, also other database engines could be applied, e.g.,
ElasticSearch8. The current database of ScaR stores information about items, users and
interactions originating from the TRUSTS portal along with metadata about the generated
recommendations in four different cores. These are depicted in Table 17:

Table 17: Solr Cores

Core Name Core Description

7
 https://solr.apache.org

8
 https://www.elastic.co/elasticsearch

https://solr.apache.org/
https://www.elastic.co/elasticsearch

D3.12 Profiles and Brokerage

© TRUSTS, 2021 Page | 28

items This core contains the following items:

 Datasets

 Services

users This core contains the entities using TRUSTS
services:

 Users

interactions This core contains interactions of users with
datasets and services.

feedbacks This core contains the calculated
recommendations as well as information
regarding the evaluation of the system.

The following subsections elaborate on the structure of the particular data objects stored in those cores:

Items Core

The Items Core contains dataset- and service-data objects, which can be subdivided into two property-
categories:

 General fields: These properties contain meta-information about the items themselves.

 Interaction fields: These properties contain information about the interaction type and
the list of users who interacted with a specific item.

The fields of the items core objects with corresponding data types are listed in Figure 5:

Figure 5: Items Core

Table 18 contains a description of the individual fields belonging to the objects in the Items Core:

D3.12 Profiles and Brokerage

© TRUSTS, 2021 Page | 29

Table 18: Items Core – Field Description

Fieldname Description

id The id of the item.

type The type of the stored item. Can either be dataset
or service.

created Datetime indicating when the item was created.

modified Datetime indicating the last modification of the
item.

titles An array of names given to the item.

descriptions An array of natural language-based descriptions
of the item.

keywords An array of tags given to the item.

themes Standardized item description.

users_buy_dataset An array of unique ids pointing to the users who
bought this dataset.

users_buy_dataset_count Total buy count of the dataset.

users_buy_service An array of unique ids pointing to the users who
bought this service.

users_buy_service_count Total buy count of the service.

users_download_dataset An array of unique ids pointing to the users who
downloaded this dataset.

users_download_dataset_count Total download count of the dataset.

users_download_service An array of unique ids pointing to the users who
downloaded this service.

users_download_service_count Total download count of the service.

users_view_dataset An array of unique ids pointing to the users who
viewed this dataset.

users_view_dataset_count Total view count of the dataset.

users_view_service An array of unique ids pointing to the users who
viewed this service.

users_view_service_count Total view count of the service.

interaction_last_modified Datetime indicating the last modification of one
of the item’s interaction fields.

D3.12 Profiles and Brokerage

© TRUSTS, 2021 Page | 30

Users Core

The Users Core contains user data objects. The fields with corresponding data types and meta-
information are listed in Figure 6.

Figure 6: Users Core

Table 19 contains a description of the individual fields belonging to the objects in the Users Core:

Table 19: Users Core – Field Description

Fieldname Description

id The id of the user.

type The type of the stored user. Can either be user or
corporation.

titles An array of names given to the user.

descriptions An array of natural language-based descriptions
of the user.

Interactions Core

The Interactions Core contains interaction data objects of users with datasets and services. The fields
with the corresponding data types and meta-information are listed in Figure 7.

Figure 7: Interactions Core

Table 20 contains a description of the individual fields belonging to the objects in the Interactions Core:

Table 20: Interactions Core – Field Description

Fieldname Description

id The id of the interaction.

type The type of the stored interaction. Can either be
buy, view or download.

timestamp Datetime indicating when the interaction

D3.12 Profiles and Brokerage

© TRUSTS, 2021 Page | 31

happened.

user_id The id of the user responsible for the interaction.

item_id The id of the item the user interacted with.

reco_id The id of the recommendation resulting in the
interaction.

Feedbacks Core

The Feedbacks Core contains feedback data objects containing information regarding recommendations
and their respective evaluation metrics. The fields with the corresponding data types and meta-
information are listed in Figure 8.

Figure 8: Feedbacks Core

Table 21 contains a description of the individual fields belonging to the objects in the Feedbacks Core:

Table 21: Feedbacks Core – Field Description

Fieldname Description

id The id of the recommendation.

recomm_profile_name The name of the profile in the Recommender
Customizer module used for generating the

recommendation.

recomm_ids An array of ids indicating the items which were
recommended.

item_ids An array of ids indicating the items on which the
recommendation is based on.

D3.12 Profiles and Brokerage

© TRUSTS, 2021 Page | 32

hybrid_recomm_*9 These fields contain additional properties of the
recommendation algorithm.

user_id The id of the user who received the
recommendation.

custom_filters The recommendation filter specified on the client
side used for filtering the results.

recomm_algo The algorithm which was applied for calculating
the recommendation.

max_recomm_results The number of recommendations requested by
the client.

recomm_type A parameter indicating whether users or items
were recommended.

recomm_time Datetime indicating when the recommendation
happened.

duration The time it took the recommendation algorithm
to finish.

eval_id The id of the evaluation.

expected_ids An array of items which should have been
recommended. Used for calculating evaluation

metrics.

interaction_count The number of interactions resulting from the
recommendation.

4.2.4 Recommendation Algorithms

We will develop three types of recommendation algorithms to realize our six recommendation use cases:

 Most Popular (MP): This is an un-personalized algorithm that always recommends the most
popular items (e.g., the datasets with the highest number of clicks)

 Collaborative Filtering (CF): This is a personalized algorithm that analyzes the interaction data on
items to find similar users, and then recommends items of these similar users.

 Content-based Filtering (CBF): This also is a personalized algorithm that calculates item-
similarities based on content features (e.g., title, description text) and then recommends these
similar items.

In the next section, we describe the offline evaluation plan for these recommendation algorithms using
OpenML data.

9
 The Feedbacks Core contains a set of parameters starting with the suffix ‘hybrid_recomm_’.

D3.12 Profiles and Brokerage

© TRUSTS, 2021 Page | 33

4.3 Offline Evaluation using OpenML Data

In order to evaluate the accuracy of the recommender system developed in TRUSTS in an offline
evaluation setting, we will use data gathered from the open-source machine learning platform
OpenML10. We have chosen OpenML since it provides an easy-to-use Python-based API to query data.
Additionally, it contains all four types of data entities that we need to train our recommender system: (i)
users, (ii) datasets (i.e., tasks in OpenML terms), (iii) services/algorithms (i.e., flows in OpenML terms),
and (iv) interactions between these entities.

In OpenML users can upload so called runs. In general, a run indicates that a user u applied a flow (i.e.,
an algorithm a with a certain parameter setting) on a certain task. Moreover, the task describes an
objective that is optimized through algorithm a on dataset d. For example, user u applies algorithm a on
a regression task on dataset d. Via these runs, we can derive several interaction datasets. For example,
users interacted with algorithms, but also with tasks. Plus, there is also an interaction between (i)
datasets and algorithms and (ii) datasets and users, since users run algorithms on tasks and as such,
datasets. With this, OpenML is a natural match to our TRUSTS recommender (cf. Figure 2), in which we
generate recommendations between users, services, and datasets. Here, we underline that we require
an algorithm, as included in a flow, as a service, which serves users the results of a task.

Retrieval

In order to demonstrate our TRUSTS recommender on data from OpenML, we built a dataset comprising
of interactions between users, datasets, and algorithms. Therefore, we utilize the Python API11 of
OpenML. First, we retrieve all openml.runs.OpenMLRun objects, i.e., runs, from the OpenML platform by
using the openml.runs.list_runs method. With these steps, we retrieve our raw dataset Draw, in which
each entry represents an interaction between a user, a flow, and a task. In total, Draw comprises
10,013,752 interactions between 579 users, 5,794 flows, and 20,539 tasks.

Preprocessing

Each entry in our raw dataset Draw only represents an interaction between a user, a flow, and a task. The
reason is that an openml.runs.OpenMLRun object does not directly include the dataset a user interacted
with. To also obtain interactions between users and datasets, we leverage the openml.tasks.get_task
method to query the openml.tasks.OpenMLTask object for the specific task_id as illustrated in Figure 9.
With that, we can link a dataset with id did to a user, i.e., uploader, and as such, extract interactions
between users and datasets. Furthermore, it is important to note that a user could run the same
algorithm on the same dataset many times. Also, a user could use different parameter settings of the
algorithm in different runs. Both actions result in different flows. With that, multiple flows could
represent the same algorithm. This poses a problem, since our raw dataset Draw could include multiple
flows for the same algorithm. Since our TRUSTS recommender only considers algorithms, i.e., services,
and not flows, we merge flows with the same algorithm, which leads to our base dataset D. D only
comprises unique (user, algorithm, dataset)-triples. Furthermore, D includes 8,637,795 interactions
between 544 users, 2,186 datasets and 5,660 algorithms.

10

 https://www.openml.org/
11

 https://docs.openml.org/Python-API/

https://www.openml.org/
https://docs.openml.org/Python-API/

D3.12 Profiles and Brokerage

© TRUSTS, 2021 Page | 34

Based on D, we derive three datasets, i.e., DUA, DUD, and DDA, which are applicable to different use-cases.
DUA contains interactions between users and algorithms, DUD represents interactions between users and
datasets and DDA comprises interaction data for datasets and algorithms. It is important to note that
since D comprises unique (user, algorithm, dataset)-triples, e.g., DUA would include multiple entries per,
e.g., user-algorithm pair. Thus, in our derived datasets, we remove all duplicates such that there are only
unique pairwise interactions between users, algorithms, and datasets. Statistics of all three datasets can
be found in Table 22,
Table 23, and
Table 24. We will use these datasets to generate train and test splits in order to evaluate the accuracy of
our recommender system in the various use cases. We will report on the specific evaluation setting in
D3.13.

Table 22: Statistics of our DUD dataset, which comprises interactions between users and datasets.

Nr. of users 544

Nr. of datasets 2,186

Nr. of interactions 9,199

Avg. nr. of interactions per user 16.91

Table 23: Statistics of our DUA dataset, which comprises interactions between users and algorithms.

Nr. of users 544

Nr. of algorithms 5,660

Nr. of interactions 7,986

Avg. nr. of interactions per user 14.13

Table 24: Statistics of our DDA dataset, which comprises interactions between datasets and algorithms.

Nr. of datasets 2,186

Nr. of algorithms 5,660

Figure 9: The connection between runs and datasets.

D3.12 Profiles and Brokerage

© TRUSTS, 2021 Page | 35

Nr. of interactions 172,888

Avg. nr. of interactions per dataset 79.09

Avg. nr. of interactions per algorithm 30.55

4.4 Research: Privacy-Preserving Recommendations

Modern recommender systems collect and process vast amounts of users’ personal data. In most cases,
this data includes a user’s preferences for, e.g., movie genres. With that, recommender systems pose
several severe threats to users’ privacy, as Friedmann et al. outline (2015). In particular, users have to
share their personal data with the recommender system, which then serves as basis for the generation
of recommendations. This by itself could be already regarded as a breach of a user’s privacy, since
another party (i.e., the recommender system) has access to the user’s personal data. Furthermore, this
data could be also used to infer sensitive attributes about the user, e.g., gender or ethnicity. Therefore, it
remains an important challenge to serve users with accurate recommendations while protecting their
privacy.

Since one goal of the TRUSTS project is to secure the privacy of personal data, i.e., TRUSTS challenge C6
“Advance the state-of-the-art with respect to scalability, computational efficiency of methods to secure
desired levels of privacy of personal data and/or confidentiality of commercial data”, we conduct
research in the area of privacy-preserving recommender systems as part of T3.6. We identify three
strands of research, aiming to develop privacy-preserving recommender systems: (i) Homomorphic
Encryption (Gentry, 2009), (ii) Differential privacy (Dwork and Roth, 2014), and (iii) Federated Learning
(McMahan et al., 2017). In Federated Learning, no data ever leaves the users’ devices. As such, users do
not send their data to the recommender system. Instead, the users share their data with a local copy of
the recommender system model on their own device and then send model parameters to the
recommender system.

Lin et al. (2020) introduce the MetaMF recommender system. Here, Federated Learning protects users’
privacy, while Meta Learning (Ha et al., 2016) increases the degree of personalization and thus, improves
accuracy of recommendations. However, according to Nasr et al. (2019), sharing only model parameters
in Federated Learning still leaks private data. Intuitively, there can be no data disclosure if there is no
data. In this vein, we acknowledge that users may have different inclinations of revealing their data to
the recommender system and identify in Muellner et al. (2021) the minimal amount of rating data, users
have to share with MetaMF in order to receive accurate recommendations. In this work, we refer to the
fraction of data a user shares with MetaMF as the user’s privacy budget β ∈ [0; 1]. Users with large
privacy budgets (i.e., β ≈ 1) share lots of their data with the recommender system. Thus, they are willing
to give up their privacy in exchange for accurate recommendations. In contrast, users with small privacy
budgets (i.e., β ≈ 0) only share a small fraction of their data with the recommender system. Thus, they
protect their privacy at the cost of rather poor recommendations. To quantify how the accuracy of user
recommendations changes, if users employ a privacy budget β, we measure the recommendation
accuracy under β relative to the recommendation accuracy of β=1. In detail, we introduce our ΔMAE@β
measurement which is the Mean absolute error of MetaMF’s recommendations if users share only a
fraction of β of their data divided by the Mean absolute error of MetaMF’s recommendations if users
share all of their data.

D3.12 Profiles and Brokerage

© TRUSTS, 2021 Page | 36

We ran experiments on five datasets, i.e., Douban (Hu et al., 2014), Hetrec-MovieLens (Cantador et al.,
2011), MovieLens 1M (Harper and Konstan, 2015), Ciao (Guo et al., 2014), and Jester (Goldberg et al.,
2001) and illustrate ΔMAE@β for decreasing privacy budgets in Figure 10. Interestingly, for a privacy
budget of β ≥ 0.5, no substantial changes of the recommendation accuracy can be observed. Only for
small privacy budgets of β < 0.5, ΔMAE@β increases. That means that the recommendation accuracy
stays high as long as users share more than 50% of their data with MetaMF (i.e., β ≥ 0.5).
Recommendation accuracy only drops if users share less than 50% of their data (i.e., β < 0.5). In this
sense, by limiting the amount of data users share with MetaMF, privacy could be increased with no
substantial loss of accuracy.

Figure 10: MetaMF

Figure 11: NoMetaMF

Since Meta Learning has been shown to improve model performance in other applications, e.g., Few-
Shot Learning (Sung et al., 2018) (Snell et al. 2017) in which a model has to be learnt on only a small
amount of data, we pinpoint the impact Meta Learning has on MetaMF’s performance under small
privacy budgets. Therefore, we develop a variant of MetaMF, i.e., NoMetaMF, in which meta learning is
disabled. Experiments for NoMetaMF can be observed in Figure 11. Similar to MetaMF, NoMetaMF
performs well for privacy budgets β ≥ 0.5, but shows a substantial decrease in recommendation accuracy
for β < 0.5. In this vein, we point out the side-by-side comparison of MetaMF and NoMetaMF in Figures
10 and 11. Here, it is apparent that for small privacy budgets, NoMetaMF’s recommendations are far
worse than MetaMF’s. Thus, if users share less than 50% of their rating data with MetaMF (i.e., β < 0.5),
Meta Learning helps to keep high recommendation accuracy.

In conclusion, we observed in our study that for a state-of-the-art recommender system, only ≈ 50% of a
user’s data is required to generate accurate recommendations. Furthermore, we provided evidence that
Meta Learning is beneficial in keeping recommendation accuracy high if users share less than 50% of
their data with the recommender system. These findings translate well into TRUSTS, as they show that (i)
users have the possibility to reveal only small amounts of personal data to a service and (ii) services may
require not all personal data of a user. By limiting the personal data users reveal to services, we hope to
make users less identifiable for the service or other parties with malicious intent.

5 Conclusions and Next Actions

D3.12 Profiles and Brokerage

© TRUSTS, 2021 Page | 37

In this demonstrator deliverable, we have described how we provide brokerage in the TRUSTS portal by
realizing a recommender system for interlinking users with datasets and services. Thus, the focus of this
deliverable has been a technical one and therefore we provided a detailed description of the TRUSTS
recommender system’s software architecture, its data scheme as well as its service interface. This should
provide other technical partners in the consortium with information on how to use and integrate our
recommender system.

Apart from this technical focus, we have also provided research-related information that we see as
important for understanding the functionality of the recommender system. This includes a short
overview of recommender systems in data markets as well as an evaluation plan and initial research
results for integrating privacy aspects into recommendations. In our research, we have shown that Meta
Learning is beneficial in terms of keeping the accuracy of recommendations high, even when users only
share a small fraction of their data.

Our plans for future work are three-fold: first, and more on the technical side, we aim to fully integrate
our recommender system into the IDS-based infrastructure of TRUSTS. This will also include the
development of a service that enables the deletion of datasets, services, users and interactions from the
database of the recommender system. Second, and according to our presented offline evaluation plan,
we will use the gathered OpenML data to evaluate our recommender system, which will enable us to
fine-tune the algorithms. Third, we will further research on privacy aspects of recommender system.
With this, we also hope to enhance the algorithms implemented in our recommender system with
respect to the fundamental privacy-accuracy trade-off. We will report on all three aspects as well as on
the final version of our recommender systems in D3.13.

6 References

Bahls, D., Scherp, G., Tochtermann, K., & Hasselbring, W. (2012). Towards a Recommender System for
Statistical Research Data. In Proceedings of the 2nd International Workshop in Semantic Digital Archives,
(pp. 61-72).

Cantador, I., Brusilovsky, P., & Kuflik, T. (2011, October). Second workshop on information heterogeneity
and fusion in recommender systems (HetRec2011). In Proceedings of the fifth ACM conference on
Recommender systems, (pp. 387-388).

Chatzopoulou, G., Erinaki, M., & Polyzotis, N. Query Recommendations for Interactive Database
Exploration. In Winslett M. (ed.). Scientific and Statistical Database Managment. SSDBM 2009. Lecture
Notes in Computer Science, vol. 5566, (pp. 3-18), Springer, Berlin, Heidelberg.

Chen, X., Gururaj, A.E., Ozyurt, B., Liu, R., Soysal, E., Cohen, T., Tiryaki, F., Li, Y., Zong, N., Jiang, M.,
Rogith, D., Salimi, M., Kim, H., Rocca-Serra, P., Gonzalez-Beltran, A., Farcas, C., Johnson, T., Margolis, R.,

Alter, G., Sansone, S., Fore, I.M., Ohno-Machado, L., Grethe, J.S., Xu, H. (2018). DataMed – an open
source discovery index for finding biomedical datasets. In Journal of the American Medical
Informatics Association, vol. 25, no. 3, (pp. 300–308).

Dwork, C., & Roth, A. (2014). The algorithmic foundations of differential privacy. In Foundations and
Trends in Theoretical Computer Science, 9(3-4), (pp. 211-407).

D3.12 Profiles and Brokerage

© TRUSTS, 2021 Page | 38

Erinaki, M., Abraham, S., & Polyzotis, N. (2014). QueRIE: Collaborative Database Exploration. In IEEE
Transactions on Knowledge and Data Engineering, vol. 26, no. 7, (pp. 1778-1790).

Erinaki, M., Patel, S., (2015). QueRIE reloaded: Using Matrix Factorization to Improve Database Query
Recommendations. In IEEE International Conference on Big Data, (pp. 1500-1508).

Friedman, A., Knijnenburg, B. P., Vanhecke, K., Martens, L., & Berkovsky, S. (2015). Privacy aspects of
recommender systems. In Recommender systems handbook (pp. 649-688). Springer, Boston, MA.

Gentry, C. (2009, May). Fully homomorphic encryption using ideal lattices. In Proceedings of the forty-
first annual ACM symposium on Theory of computing, (pp. 169-178).

Goldberg, K., Roeder, T., Gupta, D., & Perkins, C. (2001). Eigentaste: A constant time collaborative
filtering algorithm. information retrieval, 4(2), 133-151.

Guo, G., Zhang, J., Thalmann, D., & Yorke-Smith, N. (2014, August). Etaf: An extended trust antecedents
framework for trust prediction. In 2014 IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining (ASONAM 2014), (pp. 540-547). IEEE.

Ha, D., Dai, A., & Le, Q. V. (2016). Hypernetworks. arXiv preprint arXiv:1609.09106.

Harper, F. M., & Konstan, J. A. (2015). The movielens datasets: History and context. Acm transactions on
interactive intelligent systems (tiis), 5(4), 1-19.

Hu, L., Sun, A., & Liu, Y. (2014, July). Your neighbors affect your ratings: on geographical neighborhood
influence to rating prediction. In Proceedings of the 37th international ACM SIGIR conference on
Research & development in information retrieval, (pp. 345-354).

Jess, T., Woodall, P., Dodwani, V., Harrison, M., McFarlane, D., Nicks, E., & Krechel, W. (2015). An
Industrial Data Recommender System to Solve the Problem of Data Overload. In ECIS 2015 Research-In-
Progress Papers. Paper 52.

Kowald, D., Traub, M., Theiler, D., Gursch, H., Lindstaedt, S., Kern, R., & Lex, E. (2019). Using the Open

Meta Kaggle Dataset to Evaluate Tripartite Recommendations in Data Markets. In REVEAL Workshop co-

located with ACM Conference on Recommender Systems.

Lin, Y., Ren, P., Chen, Z., Ren, Z., Yu, D., Ma, J., Rijke, M., & Cheng, X. (2020). Meta Matrix Factorization

for Federated Rating Predictions. In Proceedings of the 43rd International ACM SIGIR Conference on

Research and Development in Information Retrieval.

McMahan, B., Moore, E., Ramage, D., Hampson, S., & y Arcas, B. A. (2017, April). Communication-

efficient learning of deep networks from decentralized data. In Artificial Intelligence and Statistics (pp.

1273-1282). PMLR.

Muellner P., Kowald D., Lex E. (2021) Robustness of Meta Matrix Factorization Against Strict Privacy

Constraints. In: Hiemstra D., Moens MF., Mothe J., Perego R., Potthast M., Sebastiani F. (eds) Advances in

Information Retrieval. ECIR 2021. Lecture Notes in Computer Science, vol 12657. Springer, Cham.

Nasr, M., Shokri, R., & Houmansadr, A. (2019, May). Comprehensive privacy analysis of deep learning:

Passive and active white-box inference attacks against centralized and federated learning. In 2019 IEEE

symposium on security and privacy (SP), (pp. 739-753). IEEE.

D3.12 Profiles and Brokerage

© TRUSTS, 2021 Page | 39

Patra, B.G., Roberts, K., & Wu, H. (2020). A content-based dataset recommendation system for
researchers—a case study on Gene Expression Omnibus (GEO) repository. In Database, Volume 2020,
2020.

Singhal, A., Srivastava, J. (2017). Research Dataset Discovery from Research Publications Using Web
Context. In Web Intelligence, vol. 15, no. 2, (pp. 81-99).

Song, Q., Wang, G., Wang, C. (2012). Automatic recommendation of classification algorithms based on
data set characteristics. In Pattern Recognition, vol. 45, no. 7, (2672-2689).

Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P. H., & Hospedales, T. M. (2018). Learning to compare:

Relation network for few-shot learning. In Proceedings of the IEEE conference on computer vision and

pattern recognition (pp. 1199-1208).

Snell, J., Swersky, K., & Zemel, R. S. (2017). Prototypical networks for few-shot learning. arXiv preprint

arXiv:1703.05175.

Vainshtein, R., Greenstein-Messica, A., Katz, G., Shapira, B., & Rokach, L. (2018). A Hybrid Approach for

Automatic Model Recommendation. In Proceedings of the 27th ACM International Conference on

Information and Knowledge Management, (pp. 1623-1626).

Zschech, P., Heinich, K., Horn, R., & Höschele, D. (2019). Towards a Text-based Recommender System for

Data Mining Method Selection. In 25th American Conference on Information Systems (AMCIS).

